VLAN(Virtual Local Area Network)即虚拟局域网,是网络设备上连接的不受物理位置限制的一个逻辑组。在一个VLAN上的设备或用户可以按功能、部门、应用等等分类,而不管它们的物理段位置。VLAN创建了不限于物理段的单一广播域,并可以像...VLAN(Virtual Local Area Network)即虚拟局域网,是网络设备上连接的不受物理位置限制的一个逻辑组。在一个VLAN上的设备或用户可以按功能、部门、应用等等分类,而不管它们的物理段位置。VLAN创建了不限于物理段的单一广播域,并可以像一个子网一样对待。展开更多
由于多模态数据具有异质性与耦合性等特点,使得对其进行建模存在较大难度.目前对多模态数据建模的一个重要研究方向是以变分自编码器为框架的多模态深度概率生成模型,已有的研究对不同模态数据之间的共享信息没有显式的约束,这使得多模...由于多模态数据具有异质性与耦合性等特点,使得对其进行建模存在较大难度.目前对多模态数据建模的一个重要研究方向是以变分自编码器为框架的多模态深度概率生成模型,已有的研究对不同模态数据之间的共享信息没有显式的约束,这使得多模态数据共享信息与私有信息不能被高效地解耦表示,进而导致数据的信息抽取不准确以及图像生成质量不清晰.本文在解耦表示共享信息与私有信息的研究思路上提出了基于四元组度量损失的多模态变分自编码(quadruplet metric loss based multimodal variational auto-encoder,Q-MVAE)模型,引入四元组度量损失,在隐空间显式地约束共享信息的抽取与对齐,使模型学到更好的解耦表示.相关定性与定量的实验证明了本文提出的模型在MNIST-SVHN多模态数据集上的数据表示与生成性能优于各对比模型.实验同时验证了模型对数据的推理表示也可用于多模态数据分类等下游任务.此外,模型还展现了对图像风格等私有信息解耦表示生成的潜力.展开更多
文摘由于多模态数据具有异质性与耦合性等特点,使得对其进行建模存在较大难度.目前对多模态数据建模的一个重要研究方向是以变分自编码器为框架的多模态深度概率生成模型,已有的研究对不同模态数据之间的共享信息没有显式的约束,这使得多模态数据共享信息与私有信息不能被高效地解耦表示,进而导致数据的信息抽取不准确以及图像生成质量不清晰.本文在解耦表示共享信息与私有信息的研究思路上提出了基于四元组度量损失的多模态变分自编码(quadruplet metric loss based multimodal variational auto-encoder,Q-MVAE)模型,引入四元组度量损失,在隐空间显式地约束共享信息的抽取与对齐,使模型学到更好的解耦表示.相关定性与定量的实验证明了本文提出的模型在MNIST-SVHN多模态数据集上的数据表示与生成性能优于各对比模型.实验同时验证了模型对数据的推理表示也可用于多模态数据分类等下游任务.此外,模型还展现了对图像风格等私有信息解耦表示生成的潜力.