期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
小样本轴承故障诊断研究综述 被引量:7
1
作者 司伟伟 岑健 +4 位作者 伍银波 胡学良 何敏赞 杨卓洪 陈红花 《计算机工程与应用》 CSCD 北大核心 2023年第6期45-56,共12页
随着数据时代的来临,基于数据驱动的轴承故障诊断方法表现出了优越的性能,但是此类方法依赖大量标记数据,而在实际生产过程中很难收集到大量的数据,因此小样本的轴承故障诊断具有很高的研究价值。对小样本条件下的轴承故障诊断方法进行... 随着数据时代的来临,基于数据驱动的轴承故障诊断方法表现出了优越的性能,但是此类方法依赖大量标记数据,而在实际生产过程中很难收集到大量的数据,因此小样本的轴承故障诊断具有很高的研究价值。对小样本条件下的轴承故障诊断方法进行了回顾,并将其分为两类:基于数据的方法和基于模型的方法。其中基于数据的方法是从数据角度对原始样本进行扩充;基于模型的方法是指利用模型优化特征提取或者提高分类精度等。总结了当前小样本条件下故障诊断方法的不足,并展望了小样本轴承故障诊断的未来。 展开更多
关键词 小样本 故障诊断 数据扩充 元学习 迁移学习
下载PDF
深度学习在化学流程工业故障诊断的研究进展 被引量:4
2
作者 陈红花 岑健 +1 位作者 刘溪 杨卓洪 《计算机工程与应用》 CSCD 北大核心 2022年第13期48-62,共15页
化学流程工业故障诊断(chemical process industry fault diagnosis,CPIFD)是智能制造的一个重要分支。近年来,深度学习在特征识别和分类方面显示出独特的优势和潜力,因此,基于深度学习的CPIFD研究受到了学者们的广泛关注。然而,在已发... 化学流程工业故障诊断(chemical process industry fault diagnosis,CPIFD)是智能制造的一个重要分支。近年来,深度学习在特征识别和分类方面显示出独特的优势和潜力,因此,基于深度学习的CPIFD研究受到了学者们的广泛关注。然而,在已发表的研究文献中,关于基于深度学习的CPIFD的论述是有限的,因此,旨在为CPIFD的研究提供最新的参考,并激励学者进一步探讨深度学习在CPIFD中的应用。介绍了CPIFD技术的发展,阐述了在深度学习中具有代表性模型的基本理论,并综述了它们在CPIFD中的应用,这些模型包括卷积神经网络、深度置信网络、堆叠自动编码器、长短期记忆网络和其他新兴神经网络模型;讨论了深度学习在CPIFD中所面临的问题,并对今后值得研究的方向提出了展望。 展开更多
关键词 流程工业 故障诊断 深度学习 特征提取 化工过程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部