化学流程工业故障诊断(chemical process industry fault diagnosis,CPIFD)是智能制造的一个重要分支。近年来,深度学习在特征识别和分类方面显示出独特的优势和潜力,因此,基于深度学习的CPIFD研究受到了学者们的广泛关注。然而,在已发...化学流程工业故障诊断(chemical process industry fault diagnosis,CPIFD)是智能制造的一个重要分支。近年来,深度学习在特征识别和分类方面显示出独特的优势和潜力,因此,基于深度学习的CPIFD研究受到了学者们的广泛关注。然而,在已发表的研究文献中,关于基于深度学习的CPIFD的论述是有限的,因此,旨在为CPIFD的研究提供最新的参考,并激励学者进一步探讨深度学习在CPIFD中的应用。介绍了CPIFD技术的发展,阐述了在深度学习中具有代表性模型的基本理论,并综述了它们在CPIFD中的应用,这些模型包括卷积神经网络、深度置信网络、堆叠自动编码器、长短期记忆网络和其他新兴神经网络模型;讨论了深度学习在CPIFD中所面临的问题,并对今后值得研究的方向提出了展望。展开更多
文摘化学流程工业故障诊断(chemical process industry fault diagnosis,CPIFD)是智能制造的一个重要分支。近年来,深度学习在特征识别和分类方面显示出独特的优势和潜力,因此,基于深度学习的CPIFD研究受到了学者们的广泛关注。然而,在已发表的研究文献中,关于基于深度学习的CPIFD的论述是有限的,因此,旨在为CPIFD的研究提供最新的参考,并激励学者进一步探讨深度学习在CPIFD中的应用。介绍了CPIFD技术的发展,阐述了在深度学习中具有代表性模型的基本理论,并综述了它们在CPIFD中的应用,这些模型包括卷积神经网络、深度置信网络、堆叠自动编码器、长短期记忆网络和其他新兴神经网络模型;讨论了深度学习在CPIFD中所面临的问题,并对今后值得研究的方向提出了展望。