期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于模仿学习的决策树码率自适应算法研究 被引量:1
1
作者 王博 张远 杨咏蓓 《计算机工程》 CAS CSCD 北大核心 2023年第5期206-214,共9页
码率自适应(ABR)算法是提升流媒体服务质量的有效方法,主要分为启发式算法和基于学习的算法两类。传统的启发式算法基于固定的规则,难以应对多变的网络环境,基于深度强化学习的算法映射表达能力较好,但其鲁棒性不佳且可解释性较差。针... 码率自适应(ABR)算法是提升流媒体服务质量的有效方法,主要分为启发式算法和基于学习的算法两类。传统的启发式算法基于固定的规则,难以应对多变的网络环境,基于深度强化学习的算法映射表达能力较好,但其鲁棒性不佳且可解释性较差。针对上述问题,提出一种基于模仿学习的决策树码率自适应算法ABRTree。针对帧级别直播传输系统设计有效的专家ABR算法,并对专家算法的时序经验数据进行离散化处理。采用分类回归树作为码率决策的基础模型,基于专家算法给出的示例数据,采用DAgger算法进行决策树的训练。在此基础上,通过剪枝操作剔除出现较少的样本,从而提升决策树模型的泛化性。实验结果表明,ABRTree在多种视频场景下均能保证画面质量,同时取得较低的端到端延时和较少的卡顿,相比BBA、HYSA和FrameMPC算法,ABRTree算法的QoE性能可以提升1.0%~29.1%,且决策树模型能够直观表达输入特征与码率决策之间的关系,具有较好的可解释性和映射表达能力。 展开更多
关键词 HTTP自适应流媒体 码率自适应算法 决策树 模仿学习 流媒体直播
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部