期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ECT技术的充填管道内固液两相流仿真方法研究 被引量:1
1
作者 秦学斌 李明桥 +3 位作者 申昱瞳 杨培娇 胡佳琛 刘浪 《金属矿山》 CAS 北大核心 2022年第9期31-36,共6页
矿山充填过程中,管道中产生的结块和充填料浆中夹杂的废石会造成堵管或爆管等严重安全事故,制约了矿山充填技术的应用与发展,所以及时对管道内堵塞结块及废石的方位和大小进行检测,对矿山充填的安全稳定有着重要意义。以电容层析成像(E... 矿山充填过程中,管道中产生的结块和充填料浆中夹杂的废石会造成堵管或爆管等严重安全事故,制约了矿山充填技术的应用与发展,所以及时对管道内堵塞结块及废石的方位和大小进行检测,对矿山充填的安全稳定有着重要意义。以电容层析成像(ECT)技术为基础,研究了矿山充填管道的检测方法。针对传统ECT重建算法成像质量差、精度低等问题,提出了一种适用于充填管道内固液两相流检测的基于极限学习机和卷积神经网络的ECT图像重建方法。该图像重建网络由单隐藏层前馈神经网络和图像预测网络两部分组成。利用极限学习机建立电容数据与介电常数值的映射关系,并通过图像预测网络完成对图像的重建。通过充填管道仿真试验,证明了该方法不仅能够有效减少重建图像的伪影和变形,提高图像重建准确度,而且对充填管道中可能出现的复杂情况有较好的重建效果。所提出的ECT图像重建方法对于矿山充填管道内存在的堵塞结块及废石的检测有很好的效果,可以有助于推动ECT技术在充填管道检测领域的应用和推广。 展开更多
关键词 矿山充填 电容层析成像 图像重建 极限学习机 卷积神经网络
下载PDF
Visualization detection of slurry transportation pipeline based on electrical capacitance tomography in mining filling
2
作者 QIN Xue-bin SHEN Yu-tong +4 位作者 LI Ming-qiao LIU Lang YANG Pei-jiao HU Jia-chen JI Chen-chen 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第11期3757-3766,共10页
In the long distance transportation of slurry filled for mining filling,there exist complex variation rules of pressure and flow velocity,pipe distribution location and other influencing factors.Electrical capacitance... In the long distance transportation of slurry filled for mining filling,there exist complex variation rules of pressure and flow velocity,pipe distribution location and other influencing factors.Electrical capacitance tomography(ECT)is a technique for visualizing two-phase flow in a pipe or closed container.In this paper,a visual detection method was proposed by image reconstruction of core,laminar,bubble and annular flow based on ECT technology,which reflects distribution of slurry in deep filling pipeline and measures the degree of blockage.There is an error between the measured and the real two-phase flow distribution due to two factors,which are immature image reconstruction algorithm of ECT and difference of flow patterns leading to degrees of error.In this paper,convolutional neural networks(CNN)is used to recognize flow patterns,and then the optimal image is calculated by the improved particle swarm optimization(PSO)algorithm with weights using simulated annealing strategy,and the fitness function is improved based on the results of the shallow neural network.Finally,the reconstructed binary image is further processed to obtain the position,size and direction of the blocked pipe.The realization of this method provides technical support for pipeline detection technology. 展开更多
关键词 image reconstruction electrical capacitance tomography convolutional neural networks blocked pipe
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部