期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于NeuralProphet-LSTM组合模型的港口货物吞吐量预测
被引量:
1
1
作者
杨宇鸽
郝杨杨
王逸文
《中国航海》
CSCD
北大核心
2023年第4期85-92,共8页
为进一步提高货物吞吐量预测准确性,提出基于NeuralProphet时间序列模型与长短期记忆(LSTM)神经网络的组合预测模型。首先利用NeuralProphet模型对港口货物吞吐量数据进行训练得到预测值并计算残差序列,然后对残差数据建立LSTM神经网络...
为进一步提高货物吞吐量预测准确性,提出基于NeuralProphet时间序列模型与长短期记忆(LSTM)神经网络的组合预测模型。首先利用NeuralProphet模型对港口货物吞吐量数据进行训练得到预测值并计算残差序列,然后对残差数据建立LSTM神经网络模型进行预报修正,重构得到最终的预测值。以上海港、厦门港的月度货物吞吐量数据为样本展开试验,结果表明,该模型能够有效地解决数据异常波动造成的预测结果误差大、预测效果不稳定等问题;相比于传统单一模型与LSTM-支持向量机(SVM)、Bi-LSTM等组合模型,NeuralProphet-LSTM模型预测精度更高,可帮助港航企业及时调整规划决策与经营策略。
展开更多
关键词
港口吞吐量
组合模型
预测
NeuralProphet
下载PDF
职称材料
题名
基于NeuralProphet-LSTM组合模型的港口货物吞吐量预测
被引量:
1
1
作者
杨宇鸽
郝杨杨
王逸文
机构
上海海事大学物流研究中心
出处
《中国航海》
CSCD
北大核心
2023年第4期85-92,共8页
基金
上海市科技计划项目(23692106900)。
文摘
为进一步提高货物吞吐量预测准确性,提出基于NeuralProphet时间序列模型与长短期记忆(LSTM)神经网络的组合预测模型。首先利用NeuralProphet模型对港口货物吞吐量数据进行训练得到预测值并计算残差序列,然后对残差数据建立LSTM神经网络模型进行预报修正,重构得到最终的预测值。以上海港、厦门港的月度货物吞吐量数据为样本展开试验,结果表明,该模型能够有效地解决数据异常波动造成的预测结果误差大、预测效果不稳定等问题;相比于传统单一模型与LSTM-支持向量机(SVM)、Bi-LSTM等组合模型,NeuralProphet-LSTM模型预测精度更高,可帮助港航企业及时调整规划决策与经营策略。
关键词
港口吞吐量
组合模型
预测
NeuralProphet
Keywords
port throughput
combination model
prediction
NeuralPropht
分类号
U695.2 [交通运输工程—港口、海岸及近海工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于NeuralProphet-LSTM组合模型的港口货物吞吐量预测
杨宇鸽
郝杨杨
王逸文
《中国航海》
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部