期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
个性化动态集成的阿尔茨海默症辅助诊断模型
1
作者 梁浩霖 潘丹 +2 位作者 曾安 杨宝瑶 Xiaowei Song 《计算机工程与应用》 CSCD 北大核心 2024年第5期139-145,共7页
针对阿尔茨海默症(AD)分类模型大多没有针对输入样本制定特定的策略,导致容易忽略样本间的个性化差异信息的问题,提出个性化动态集成AD分类模型。该模型考虑到输入样本间脑区退化程度的差异性,利用注意力机制评估特定于输入样本的各脑... 针对阿尔茨海默症(AD)分类模型大多没有针对输入样本制定特定的策略,导致容易忽略样本间的个性化差异信息的问题,提出个性化动态集成AD分类模型。该模型考虑到输入样本间脑区退化程度的差异性,利用注意力机制评估特定于输入样本的各脑区退化程度,并根据脑区退化程度对脑区特征进行挑选和融合;同时通过重新设计损失函数,解决未被选中脑区无法获得优化梯度的问题,从而提高AD分类性能。实验结果表明,该模型在AD vs.HC(正常组)、MCIc(会向AD转化的轻度认知障碍)vs.HC以及MCIc vs.MCInc(不会向AD转化的轻度认知障碍)中的分类准确率表现分别提升4%、11%以及8%。同时,模型定位到的退化脑区功能与AD临床表现具有高度一致性。 展开更多
关键词 阿尔茨海默症(AD) 动态集成策略 集成学习 卷积神经网络
下载PDF
基于强化学习的B型主动脉夹层定位方法
2
作者 曾安 林先扬 +3 位作者 赵靖亮 潘丹 杨宝瑶 刘鑫 《生物医学工程学杂志》 EI CAS 北大核心 2024年第5期878-885,共8页
主动脉夹层分割中存在主动脉夹层与周围器官和血管的对比度低、夹层形态差异大以及背景噪声大等问题。针对以上问题,本文提出一种基于强化学习的B型主动脉夹层定位方法,借助两阶段分割模型,使用深度强化学习执行第一阶段的主动脉定位任... 主动脉夹层分割中存在主动脉夹层与周围器官和血管的对比度低、夹层形态差异大以及背景噪声大等问题。针对以上问题,本文提出一种基于强化学习的B型主动脉夹层定位方法,借助两阶段分割模型,使用深度强化学习执行第一阶段的主动脉定位任务,保证定位目标的完整性;在第二阶段,使用第一阶段的粗分割结果作为输入,得到精细的分割结果。为了提高一阶段分割结果的召回率(Recall),使定位结果更完整地包含分割目标,本文设计了基于Recall变化方向的强化学习奖励函数;同时,将定位窗口与视野窗口分离,减少分割目标缺失的情况。本文选取Unet、TransUnet、SwinUnet以及MT-Unet作为基准分割模型,通过实验验证,本文的两阶段分割流程结果中多数指标均优于基准结果,其中Dice指标分别提高1.34%、0.89%、27.66%和7.37%。综上,将本文的B型夹层定位方法加入分割流程,最终的分割精度较基准模型结果有所提升,对于分割效果较差的模型提升效果更显著。 展开更多
关键词 主动脉夹层 两阶段分割 强化学习 奖励函数
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部