浓HNO3和酸性K2Cr2O7都具有一定的氧化性,分别利用浓HNO3和酸性K2Cr2O7对阳极碳布进行氧化改性处理。通过红外光谱测试显示,碳布表面附着了羟基(—OH)和羧基(—COOH)。通过扫描电镜观察,碳布经过氧化改性后表面明显变粗糙。同时,循环伏...浓HNO3和酸性K2Cr2O7都具有一定的氧化性,分别利用浓HNO3和酸性K2Cr2O7对阳极碳布进行氧化改性处理。通过红外光谱测试显示,碳布表面附着了羟基(—OH)和羧基(—COOH)。通过扫描电镜观察,碳布经过氧化改性后表面明显变粗糙。同时,循环伏安曲线(CV)和交流阻抗曲线(EIS)测试表明,经过改性后的碳布具有良好的电化学特性。分别以经过浓HNO3和酸性K2Cr2O7改性处理后的碳布作为微生物燃料电池(MFC)的阳极,获得的最大功率密度分别为291.11 m W·m-2和438.08 m W·m-2,比未经过改性处理的碳布阳极的功率密度分别提升了21%和82%。展开更多
文摘利用机械混合及化学复合两种混合方式制备出用于微生物燃料电池(MFC)阴极的Mn O_2与活性炭导电材料的混合催化剂,混合质量比分别为1∶3,1∶1和3∶1。将以各催化剂制作的碳布阴极置于空气阴极MFC中运行,利用线性扫描伏安法测试碳布阴极的性能。研究表明,两种混合催化剂均在混合质量比为1∶1时具有最佳性能;化学复合催化剂MFC的最大功率密度达到336 m W/m^2,是单纯使用Mn O_2粉末时的2.51倍,优于机械混合的催化剂。
文摘浓HNO3和酸性K2Cr2O7都具有一定的氧化性,分别利用浓HNO3和酸性K2Cr2O7对阳极碳布进行氧化改性处理。通过红外光谱测试显示,碳布表面附着了羟基(—OH)和羧基(—COOH)。通过扫描电镜观察,碳布经过氧化改性后表面明显变粗糙。同时,循环伏安曲线(CV)和交流阻抗曲线(EIS)测试表明,经过改性后的碳布具有良好的电化学特性。分别以经过浓HNO3和酸性K2Cr2O7改性处理后的碳布作为微生物燃料电池(MFC)的阳极,获得的最大功率密度分别为291.11 m W·m-2和438.08 m W·m-2,比未经过改性处理的碳布阳极的功率密度分别提升了21%和82%。