期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的鲕粒智能检测与特征统计
1
作者 张晓燕 李艳 +3 位作者 芦碧波 侯广顺 邢智峰 杨晓芃 《矿物学报》 CAS CSCD 北大核心 2024年第1期24-32,共9页
鲕粒是一类特殊的沉积颗粒,其分布的疏密程度、粒径大小等信息可以直观地反映形成环境的水深以及水动力条件,具有重要的地质意义。在地质学中,通常将鲕粒岩石标本磨制成岩石薄片,并依靠专业人员在显微镜下观察来获取鲕粒含量、圆度、径... 鲕粒是一类特殊的沉积颗粒,其分布的疏密程度、粒径大小等信息可以直观地反映形成环境的水深以及水动力条件,具有重要的地质意义。在地质学中,通常将鲕粒岩石标本磨制成岩石薄片,并依靠专业人员在显微镜下观察来获取鲕粒含量、圆度、径粒大小等数据的估计值,存在着计算量大、成本高、周期长、人力投入大等缺点,而且该方法受主观因素影响较大,不同专家得出的结果也不尽相同。针对上述问题,本文提出了基于深度学习的鲕粒智能检测与特征统计方法,主要采用YOLOv5检测模型对鲕粒岩石薄片显微图像进行检测,并在YOLOv5网络主干部分添加轻量级的SE-Net通道注意力机制模块来提升检测性能;其次,本次使用DIoU-NMS替换NMS方法,改善图像中鲕粒分布拥挤时的漏检问题。实验证明改进后的算法最终精确率达到了98.8%,比原算法提升了1.3%。最后利用图像处理技术,对检测结果进行量化统计和分析,得到图像中鲕粒含量、圆度信息、粒径大小的统计结果直方图,为地质工作人员进行相关工作提供了极大的便利。 展开更多
关键词 深度学习 改进YOLOv5 鲕粒检测 注意力机制 统计分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部