为提高无人机对架空输电线路巡检的效率和线路中螺栓缺销的检测精度,提出了改进的你只看一次第7微小版(you only look once version 7-tiny,YOLOv7-tiny)输电线路螺栓缺销检测算法。该算法采用高效的分布移位卷积(distribution shifting...为提高无人机对架空输电线路巡检的效率和线路中螺栓缺销的检测精度,提出了改进的你只看一次第7微小版(you only look once version 7-tiny,YOLOv7-tiny)输电线路螺栓缺销检测算法。该算法采用高效的分布移位卷积(distribution shifting convolution,DSConv)来替换YOLOv7-tiny网络中的3×3卷积,以提高模型的计算速度并降低计算复杂度;在模型的检测头部分,添加了高效解耦头结构,以提高模型的准确度和稳定性;并采用明智的交并比(wise intersection over union,WIoU)损失函数来提高正样本的权重,使模型更加关注缺销螺栓目标,以减少正负样本不平衡带来的噪声干扰。实验结果表明,改进YOLOv7-tiny算法对输电线路螺栓缺销检测的平均精度均值达到90.6%,检测速度达到143.0帧/s,同时实现了检测的高速度和高精度。该算法在无人机输电线路巡检中具有一定的优势。展开更多
文摘为提高无人机对架空输电线路巡检的效率和线路中螺栓缺销的检测精度,提出了改进的你只看一次第7微小版(you only look once version 7-tiny,YOLOv7-tiny)输电线路螺栓缺销检测算法。该算法采用高效的分布移位卷积(distribution shifting convolution,DSConv)来替换YOLOv7-tiny网络中的3×3卷积,以提高模型的计算速度并降低计算复杂度;在模型的检测头部分,添加了高效解耦头结构,以提高模型的准确度和稳定性;并采用明智的交并比(wise intersection over union,WIoU)损失函数来提高正样本的权重,使模型更加关注缺销螺栓目标,以减少正负样本不平衡带来的噪声干扰。实验结果表明,改进YOLOv7-tiny算法对输电线路螺栓缺销检测的平均精度均值达到90.6%,检测速度达到143.0帧/s,同时实现了检测的高速度和高精度。该算法在无人机输电线路巡检中具有一定的优势。