Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in th...Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.展开更多
基金supported by the National Key Research and Development Program of China (Nos. 2019YFE03070000and 2019YFE03070003)National Natural Science Foundation of China (Nos. 11975265 and 11775258)+2 种基金Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228)the Open Fund of Magnetic Confinement Fusion Laboratory of Anhui Province (No. 2021AMF01001)Hefei Science Center,CAS(No. 2021HSC-KPRD001)。
文摘Two new ICRF antennas operating in the ion cyclotron radio frequency(ICRF) range have been developed for EAST to overcome the low coupling problem of the original antennas.The original ICRF antennas were limited in their power capacity due to insufficient coupling.The new antenna design takes into account both wave coupling and absorption processes through comprehensive wave coupling and absorption codes,with the dominant parallel wave number k∥of 7.5 m-1at dipole phasing.Through the use of these new ICRF antennas,we are able to achieve 3.8 MW output power and 360 s operation,respectively.The initial experimental results demonstrate the reliability of the antenna design method.