期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
实时工况仿真场景下蒸汽发生器液面智能预测模型的实现与验证
被引量:
2
1
作者
佘兢克
王佳妮
+1 位作者
杨溯源
薛时雨
《仪器仪表用户》
2021年第9期15-22,共8页
本文使用基于深度学习方法的长短期记忆(Long Short-Term Memory,LSTM)模型来预测核电站蒸汽发生器的液面工况,以有效地解决蒸汽发生器液面控制过程中的参数预测问题。该模型在SIMULINK环境下,实现并且构建了一个使用传统PID控制器的实...
本文使用基于深度学习方法的长短期记忆(Long Short-Term Memory,LSTM)模型来预测核电站蒸汽发生器的液面工况,以有效地解决蒸汽发生器液面控制过程中的参数预测问题。该模型在SIMULINK环境下,实现并且构建了一个使用传统PID控制器的实时工况验证平台,对其进行功能和性能验证。PID控制回路的反馈信号为LSTM模型提供实时在线的输入更新,从而获得LSTM模型对于液面变化的实时预测结果。通过与传统RNN模型的对比实验证明,LSTM模型所具有的长时间序列数据处理优势对于蒸汽发生器核心参数的预测非常有效而且精准。LSTM模型对液面的预测误差可低至-1.1887×10-4,预测过程的损失值可低至1.4130×10-8。而且实验结果显示,LSTM模型在预测过程中具有较快的收敛能力,可以在更短的时间内输出准确的预测结果,这对于及时而准确地判断蒸汽发生器的工作状况,维持核电站正常运行具有重要意义。利用LSTM模型的快速准确预测能力,还可以在未来对传统的PID控制方法实行智能化改造,提升蒸汽发生器液面控制的快速响应能力。
展开更多
关键词
蒸汽发生器
液面预测
深度学习
长短期记忆模型
下载PDF
职称材料
题名
实时工况仿真场景下蒸汽发生器液面智能预测模型的实现与验证
被引量:
2
1
作者
佘兢克
王佳妮
杨溯源
薛时雨
机构
湖南大学信息科学与工程学院
出处
《仪器仪表用户》
2021年第9期15-22,共8页
基金
湖南省自然科学基金项目,“基于预测控制的核电站快速响应与智能控制研究”(2018JJ2057)
湖南省“湖湘高层次人才聚集工程-创新人才计划”(2018RS3050)
2019年工业互联网创新-基于工业互联网平台的生产线数字孪生系统项目
文摘
本文使用基于深度学习方法的长短期记忆(Long Short-Term Memory,LSTM)模型来预测核电站蒸汽发生器的液面工况,以有效地解决蒸汽发生器液面控制过程中的参数预测问题。该模型在SIMULINK环境下,实现并且构建了一个使用传统PID控制器的实时工况验证平台,对其进行功能和性能验证。PID控制回路的反馈信号为LSTM模型提供实时在线的输入更新,从而获得LSTM模型对于液面变化的实时预测结果。通过与传统RNN模型的对比实验证明,LSTM模型所具有的长时间序列数据处理优势对于蒸汽发生器核心参数的预测非常有效而且精准。LSTM模型对液面的预测误差可低至-1.1887×10-4,预测过程的损失值可低至1.4130×10-8。而且实验结果显示,LSTM模型在预测过程中具有较快的收敛能力,可以在更短的时间内输出准确的预测结果,这对于及时而准确地判断蒸汽发生器的工作状况,维持核电站正常运行具有重要意义。利用LSTM模型的快速准确预测能力,还可以在未来对传统的PID控制方法实行智能化改造,提升蒸汽发生器液面控制的快速响应能力。
关键词
蒸汽发生器
液面预测
深度学习
长短期记忆模型
Keywords
steam generator
level prediction
deep learning
LSTM
分类号
TK39 [动力工程及工程热物理—热能工程]
TP18 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
实时工况仿真场景下蒸汽发生器液面智能预测模型的实现与验证
佘兢克
王佳妮
杨溯源
薛时雨
《仪器仪表用户》
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部