自适应滤波器在自适应控制、噪声消除、信道均衡、系统辨识以及生物医学等领域的应用中发挥着重要作用。由于其简单性、低计算量和易于实现等特点,其中最流行的自适应滤波算法是最小均方(Least Mean Square,LMS)算法。传统的LMS算法在...自适应滤波器在自适应控制、噪声消除、信道均衡、系统辨识以及生物医学等领域的应用中发挥着重要作用。由于其简单性、低计算量和易于实现等特点,其中最流行的自适应滤波算法是最小均方(Least Mean Square,LMS)算法。传统的LMS算法在处理高斯信号时具有良好的收敛性能,然而,针对非高斯信号的处理,自适应LMS算法的收敛性较差,甚至无法收敛。为了改进LMS算法在非高斯噪声干扰下的收敛性,本文通过将传统的LMS算法的代价函数嵌入到双曲正切(Hyperbolic Tangent)函数框架中设计了一种新的代价函数,从而提出了一种鲁棒的双曲正切最小均方(Hyperbolic Tangent Least Mean Square,HTLMS)算法。此外,针对HTLMS算法存在收敛速度与稳态误差相矛盾的问题,本文设计了一种可变λ参数的双曲正切最小均方(Variableλ-parameter Hyperbolic Tangent Least Mean Square,VHTLMS)算法。仿真结果表明,在系统辨识应用场景中,与LMS算法、最大相关熵准则(Generalized Maximum Correntropy Criterion,GMCC)自适应滤波算法和对数双曲余弦自适应滤波器(Logarithmic Hyperbolic Cosine Adaptive Filter,LHCAF)算法相比较,本文提出的HTLMS算法和VHTLMS算法在冲击噪声干扰下具有良好的鲁棒性、更快的收敛速度和较小的稳态误差。展开更多
文摘自适应滤波器在自适应控制、噪声消除、信道均衡、系统辨识以及生物医学等领域的应用中发挥着重要作用。由于其简单性、低计算量和易于实现等特点,其中最流行的自适应滤波算法是最小均方(Least Mean Square,LMS)算法。传统的LMS算法在处理高斯信号时具有良好的收敛性能,然而,针对非高斯信号的处理,自适应LMS算法的收敛性较差,甚至无法收敛。为了改进LMS算法在非高斯噪声干扰下的收敛性,本文通过将传统的LMS算法的代价函数嵌入到双曲正切(Hyperbolic Tangent)函数框架中设计了一种新的代价函数,从而提出了一种鲁棒的双曲正切最小均方(Hyperbolic Tangent Least Mean Square,HTLMS)算法。此外,针对HTLMS算法存在收敛速度与稳态误差相矛盾的问题,本文设计了一种可变λ参数的双曲正切最小均方(Variableλ-parameter Hyperbolic Tangent Least Mean Square,VHTLMS)算法。仿真结果表明,在系统辨识应用场景中,与LMS算法、最大相关熵准则(Generalized Maximum Correntropy Criterion,GMCC)自适应滤波算法和对数双曲余弦自适应滤波器(Logarithmic Hyperbolic Cosine Adaptive Filter,LHCAF)算法相比较,本文提出的HTLMS算法和VHTLMS算法在冲击噪声干扰下具有良好的鲁棒性、更快的收敛速度和较小的稳态误差。