-
题名基于模态分解和云粒子网络的大坝基岩地震动输入研究
被引量:1
- 1
-
-
作者
张宏洋
李桐
杨益格
丁泽霖
张先起
汪顺生
-
机构
华北水利水电大学水利学院
华北水利水电大学清源书院
黄河流域水资源高效利用省部共建协同创新中心
-
出处
《水利学报》
EI
CSCD
北大核心
2023年第6期749-761,共13页
-
基金
国家自然科学基金项目(52079051)
河南省高等学校重点科研项目(21A570001,22A570004,23A570006)。
-
文摘
在大坝抗震安全评价中基岩地震动输入多采用实测数据或人工生成等方式,而当坝址仪器损坏或历史震害资料不足时,确定基岩地震动就变得尤为困难。本文提出对大坝基岩地震动进行反演的研究思路,并开发了基于经验模态分解和云粒子网络的分解—训练—反演混合模型,在不依赖场地历史震害资料的情况下,仅用少量周边测站数据即可确定大坝的基岩地震动。首先,选取坝址周边地表及基岩的地震动实测记录,采用经验模态分解法将地震加速度序列分解;其次,通过粒子群算法建立与神经网络连接权值的映射,采用云理论优化粒子群算法的全局寻优能力,建立反演模型,将分解后的加速度序列作为训练集进行反演训练;然后,选取与大坝处于相似地质情况的地表实测地震动信息,结合反演模型对大坝基岩输入地震动进行反演;最后,以紫坪铺大坝为研究实例,通过对比传统输入方法,验证该模型的适用性。结果表明:本文所提的混合模型综合性能稳定,能较好地反演地震加速度序列,模型决定系数均大于0.9,平均绝对百分比误差均在11%左右;采用本文反演得到的基岩地震动进行计算,较已有研究成果计算误差降低0.79%~17.28%,与工程实际动力响应更为吻合。本文方法可为解决大坝基岩输入地震动的获取提供一条新途径。
-
关键词
地震动输入
土石坝
反演
径向基神经网络
云理论
粒子群优化
经验模态分解
-
Keywords
seismic wave input
earth rock dam
inversion
radial basis function neural network
cloud theory
particle swarm optimization
empirical modal decomposition
-
分类号
TV312
[水利工程—水工结构工程]
-