采用Kinetic Monte Carlo(KMC)方法对描述分子束外延生长(MBE)的1+1维Wolf-Villain模型进行大尺寸和长生长时间的数值模拟研究,以消除渡越行为的影响.计算得到整体和局域标度指数.结果显示,在所模拟的空间和时间尺度范围内,1+1维Wolf-Vi...采用Kinetic Monte Carlo(KMC)方法对描述分子束外延生长(MBE)的1+1维Wolf-Villain模型进行大尺寸和长生长时间的数值模拟研究,以消除渡越行为的影响.计算得到整体和局域标度指数.结果显示,在所模拟的空间和时间尺度范围内,1+1维Wolf-Villain模型仍呈现出固有奇异标度行为.这一结论与López等人最近的理论分析结果不一致.展开更多
In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by ...In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L 〉 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.展开更多
文摘采用Kinetic Monte Carlo(KMC)方法对描述分子束外延生长(MBE)的1+1维Wolf-Villain模型进行大尺寸和长生长时间的数值模拟研究,以消除渡越行为的影响.计算得到整体和局域标度指数.结果显示,在所模拟的空间和时间尺度范围内,1+1维Wolf-Villain模型仍呈现出固有奇异标度行为.这一结论与López等人最近的理论分析结果不一致.
基金supported by the National Natural Science Foundation of China (Grant No. 10674177)the Youth Foundation of China University of Mining & Technology (Grant No. 2008A035)
文摘In order to discuss the finite-size effect and the anomalous dynamic scaling behaviour of Das Sarma-Tamborenea growth model, the (1+1)-dimensional Das Sarma-Tamborenea model is simulated on a large length scale by using the kinetic Monte-Carlo method. In the simulation, noise reduction technique is used in order to eliminate the crossover effect. Our results show that due to the existence of the finite-size effect, the effective global roughness exponent of the (1+1)-dimensional Das Sarma-Tamborenea model systematically decreases with system size L increasing when L 〉 256. This finding proves the conjecture by Aarao Reis[Aarao Reis F D A 2004 Phys. Rev. E 70 031607]. In addition, our simulation results also show that the Das Sarma-Tamborenea model in 1+1 dimensions indeed exhibits intrinsic anomalous scaling behaviour.