Nanodiamonds have outstanding mechanical properties,chemical inertness,and biocompatibility,which give them potential in various applications.Current methods for preparing nanodiamonds often lead to products with impu...Nanodiamonds have outstanding mechanical properties,chemical inertness,and biocompatibility,which give them potential in various applications.Current methods for preparing nanodiamonds often lead to products with impurities and uneven morphologies.We report a two-step high-pressure high-temperature(HPHT) method to synthesize nanodiamonds using naphthalene as the precursor without metal catalysts.The grain size of the diamonds decreases with increasing carbonization time(at constant pressure and temperature of 11.5 GPa and 700℃,respectively).This is discussed in terms of the different crystallinities of the carbon intermediates.The probability of secondary anvil cracking during the HPHT process is also reduced.These results indicate that the two-step method is efficient for synthesizing nanodiamonds,and that it is applicable to other organic precursors.展开更多
Searching for new carbon allotropes with superior properties has been a longstanding interest in material sciences and condensed matter physics.Here we identify a novel superhard carbon phase with an 18-atom trigonal ...Searching for new carbon allotropes with superior properties has been a longstanding interest in material sciences and condensed matter physics.Here we identify a novel superhard carbon phase with an 18-atom trigonal unit cell in a full-sp^(3) bonding network,termed tri-C_(18) carbon,by first-principles calculations.Its structural stability has been verified by total energy,phonon spectra,elastic constants,and molecular dynamics simulations.Furthermore,tri-C_(18) carbon has a high bulk modulus of 400 GPa and Vickers hardness of 79.0 GPa,comparable to those of diamond.Meanwhile,the simulated x-ray diffraction pattern of tri-C_(18) carbon matches well with the previously unexplained diffraction peaks found in chimney soot,indicating the possible presence of tri-C_(18) carbon.Remarkably,electronic band structure calculations reveal that tri-C_(18) carbon has a wide indirect bandgap of 6.32 eV,larger than that of cubic diamond,indicating its great potential in electronic or optoelectronic devices working in the deep ultraviolet region.展开更多
Carbyne,as the truly one-dimensional carbon allotrope with sp-hybridization,has attracted significant interest in recent years,showing potential applications in next-generation molecular devices due to its ultimate on...Carbyne,as the truly one-dimensional carbon allotrope with sp-hybridization,has attracted significant interest in recent years,showing potential applications in next-generation molecular devices due to its ultimate one-atom thinness.Various excellent properties of carbyne have been predicted,however,free-standing carbyne sample is extremely unstable and the corresponding experimental researches and modifications are under-developed compared to other known carbon allotropes.The synthesis of carbyne has been slowly developed for the past decades.Recently,there have been several breakthroughs in in-situ synthesis and measurement of carbyne related materials,as well as the preparation of ultra-long carbon chains toward infinite carbyne.These progresses have aroused widespread discussion in the academic community.In this review,the latest approaches in the synthesis of sp carbon are summarized.We then discuss its extraordinary properties,including mechanical,electronic,magnetic,and optical properties,especially focusing on the regulations of these properties.Finally,we provide a perspective on the development of carbyne.展开更多
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB0406500)the National Natural Science Foundation of China(Grant Nos.U1804155,U1604263,and 11804307)the China Postdoctoral Science Foundation(Grant Nos.2018M630830 and 2019T120631).
文摘Nanodiamonds have outstanding mechanical properties,chemical inertness,and biocompatibility,which give them potential in various applications.Current methods for preparing nanodiamonds often lead to products with impurities and uneven morphologies.We report a two-step high-pressure high-temperature(HPHT) method to synthesize nanodiamonds using naphthalene as the precursor without metal catalysts.The grain size of the diamonds decreases with increasing carbonization time(at constant pressure and temperature of 11.5 GPa and 700℃,respectively).This is discussed in terms of the different crystallinities of the carbon intermediates.The probability of secondary anvil cracking during the HPHT process is also reduced.These results indicate that the two-step method is efficient for synthesizing nanodiamonds,and that it is applicable to other organic precursors.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11804307,U1804155,and U1604263)the China Postdoctoral Science Foundation(Grant Nos.2018M630830 and 2019T120631).
文摘Searching for new carbon allotropes with superior properties has been a longstanding interest in material sciences and condensed matter physics.Here we identify a novel superhard carbon phase with an 18-atom trigonal unit cell in a full-sp^(3) bonding network,termed tri-C_(18) carbon,by first-principles calculations.Its structural stability has been verified by total energy,phonon spectra,elastic constants,and molecular dynamics simulations.Furthermore,tri-C_(18) carbon has a high bulk modulus of 400 GPa and Vickers hardness of 79.0 GPa,comparable to those of diamond.Meanwhile,the simulated x-ray diffraction pattern of tri-C_(18) carbon matches well with the previously unexplained diffraction peaks found in chimney soot,indicating the possible presence of tri-C_(18) carbon.Remarkably,electronic band structure calculations reveal that tri-C_(18) carbon has a wide indirect bandgap of 6.32 eV,larger than that of cubic diamond,indicating its great potential in electronic or optoelectronic devices working in the deep ultraviolet region.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12174348 and 62027816)the China Postdoctoral Science Foundation(Grant Nos.2018M630830 and 2019T120631)+1 种基金the Natural Science Foundation of Henan Province,China(Grant No.212300410410)the Fund from the Henan Center for Outstanding Overseas Scientists(Grant No.GZS201903)
文摘Carbyne,as the truly one-dimensional carbon allotrope with sp-hybridization,has attracted significant interest in recent years,showing potential applications in next-generation molecular devices due to its ultimate one-atom thinness.Various excellent properties of carbyne have been predicted,however,free-standing carbyne sample is extremely unstable and the corresponding experimental researches and modifications are under-developed compared to other known carbon allotropes.The synthesis of carbyne has been slowly developed for the past decades.Recently,there have been several breakthroughs in in-situ synthesis and measurement of carbyne related materials,as well as the preparation of ultra-long carbon chains toward infinite carbyne.These progresses have aroused widespread discussion in the academic community.In this review,the latest approaches in the synthesis of sp carbon are summarized.We then discuss its extraordinary properties,including mechanical,electronic,magnetic,and optical properties,especially focusing on the regulations of these properties.Finally,we provide a perspective on the development of carbyne.