We demonstrate the curvature of coupled twin circular-side-octagon microcavity(TCOM)lasers as the degree of freedom to realize manipulation of mode quality(Q)factor and lasing characteristics.Numerical simulation resu...We demonstrate the curvature of coupled twin circular-side-octagon microcavity(TCOM)lasers as the degree of freedom to realize manipulation of mode quality(Q)factor and lasing characteristics.Numerical simulation results indicate that mode Q factors varying from 10^(4) to 10^(8),wavelength intervals of different transverse modes,and mode numbers for four-bounce modes can be manipulated for five different deformations.Global mode distributes throughout coupled microcavity with mode Q factor around the order of 10^(4) or 10^(5).Four-bounce modes lase with injection currents applied single microcavity.By pumping both microcavities simultaneously,single-mode lasing for global modes with side mode suppression ratios(SMSRs)of 30,32,32,31,and 36 dB is achieved at the deformation of 0,0.5,1,1.5,and 2 with four-bounce modes suppressed,respectively.Moreover,the linewidths less than 11 MHz for the single mode are obtained with the deformation of 2.The results show that the lasing modes can be efficiently manipulated considering variable curvature for TCOM lasers,which can promote practical applications of microcavity lasers.展开更多
Mode competitions between modes with different output coupling efficiencies can result in optical bistability under certain asymmetric nonlinear gain. For a GaInAsP/InP equilateral triangle microlaser with the side le...Mode competitions between modes with different output coupling efficiencies can result in optical bistability under certain asymmetric nonlinear gain. For a GaInAsP/InP equilateral triangle microlaser with the side length of 10μm, the drop of the output power with the increase of the injection current is observed corresponding to transverse mode transitions. Furthermore, the measured laser spectra up to 270K show that lasing modes coexist with the wavelength interval of 39nm at 240K. The emission at 5.2THz can be expected by the mode frequency beating with the 39nm interval.展开更多
Square microcavities, which support whispering-gallery modes with total internal reflections, can be employed as high-quality laser resonators for fabricating compact, low-threshold semiconductor lasers. In this paper...Square microcavities, which support whispering-gallery modes with total internal reflections, can be employed as high-quality laser resonators for fabricating compact, low-threshold semiconductor lasers. In this paper, we review the recent progress of square microcavity semiconductor lasers. The characteristics of confined optical modes in the square microcavities are introduced briefly. Based on the mode properties of the square microcavities, dual-mode lasers with tunable wavelength intervals are realized for generating microwave signals. Furthermore, deformed square microcavity lasers with the sidewalls replaced by circular sides are proposed and experimentally demonstrated to enhance the mode confinement and increase the dual-mode interval to the THz range. In order to further reduce the device size, metal-confined wavelength-scale square cavity lasers are also demonstrated.展开更多
A circular-sided square microcavity laser etched a central hole has achieved chaos operation with a bandwidth of 20.8 GHz without external optical feedback or injection,in which the intensity probability distribution ...A circular-sided square microcavity laser etched a central hole has achieved chaos operation with a bandwidth of 20.8 GHz without external optical feedback or injection,in which the intensity probability distribution of a chaotic signal with a twopeak pattern was observed.Based on the self-chaotic microlaser,physical random numbers at 400 Gb/s were generated by extracting the four least significant bits without other complex post-processing methods.The solitary chaos laser and minimal post-processing have predicted a simpler and low-cost on-chip random number generator in the future.展开更多
基金Project supported by the Strategic Priority Research Program,Chinese Academy of Sciences(Grant No.XDB43000000)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDJSSW-JSC002)the National Natural Science Foundation of China(Grant Nos.61874113,61875188,and 61935018).
文摘We demonstrate the curvature of coupled twin circular-side-octagon microcavity(TCOM)lasers as the degree of freedom to realize manipulation of mode quality(Q)factor and lasing characteristics.Numerical simulation results indicate that mode Q factors varying from 10^(4) to 10^(8),wavelength intervals of different transverse modes,and mode numbers for four-bounce modes can be manipulated for five different deformations.Global mode distributes throughout coupled microcavity with mode Q factor around the order of 10^(4) or 10^(5).Four-bounce modes lase with injection currents applied single microcavity.By pumping both microcavities simultaneously,single-mode lasing for global modes with side mode suppression ratios(SMSRs)of 30,32,32,31,and 36 dB is achieved at the deformation of 0,0.5,1,1.5,and 2 with four-bounce modes suppressed,respectively.Moreover,the linewidths less than 11 MHz for the single mode are obtained with the deformation of 2.The results show that the lasing modes can be efficiently manipulated considering variable curvature for TCOM lasers,which can promote practical applications of microcavity lasers.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60777028, 60723002 and 60838003, the National Basic Research Program of China under Grant No 2006CB302804, and the Collaborative Project of National Laboratory for Tsinghua Information Technologies.
文摘Mode competitions between modes with different output coupling efficiencies can result in optical bistability under certain asymmetric nonlinear gain. For a GaInAsP/InP equilateral triangle microlaser with the side length of 10μm, the drop of the output power with the increase of the injection current is observed corresponding to transverse mode transitions. Furthermore, the measured laser spectra up to 270K show that lasing modes coexist with the wavelength interval of 39nm at 240K. The emission at 5.2THz can be expected by the mode frequency beating with the 39nm interval.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61527823 and 61377105)
文摘Square microcavities, which support whispering-gallery modes with total internal reflections, can be employed as high-quality laser resonators for fabricating compact, low-threshold semiconductor lasers. In this paper, we review the recent progress of square microcavity semiconductor lasers. The characteristics of confined optical modes in the square microcavities are introduced briefly. Based on the mode properties of the square microcavities, dual-mode lasers with tunable wavelength intervals are realized for generating microwave signals. Furthermore, deformed square microcavity lasers with the sidewalls replaced by circular sides are proposed and experimentally demonstrated to enhance the mode confinement and increase the dual-mode interval to the THz range. In order to further reduce the device size, metal-confined wavelength-scale square cavity lasers are also demonstrated.
基金supported by the National Natural Science Foundation of China(Nos.12274407,61935018,62122073,and 61874113)the Strategic Priority Research Program,Chinese Academy of Sciences(No.XDB43000000)。
文摘A circular-sided square microcavity laser etched a central hole has achieved chaos operation with a bandwidth of 20.8 GHz without external optical feedback or injection,in which the intensity probability distribution of a chaotic signal with a twopeak pattern was observed.Based on the self-chaotic microlaser,physical random numbers at 400 Gb/s were generated by extracting the four least significant bits without other complex post-processing methods.The solitary chaos laser and minimal post-processing have predicted a simpler and low-cost on-chip random number generator in the future.