期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于格拉姆角场与ResNet的输电线路故障辨识方法
1
作者 赵启 王建 +3 位作者 林丰恺 陈军 南东亮 欧阳金鑫 《电力系统保护与控制》 EI CSCD 北大核心 2024年第10期95-104,共10页
针对如何利用实际故障录波数据,提取和放大故障特征差异,开展故障类型与故障原因辨识的问题,提出了基于格拉姆角场与迁移学习-ResNet的输电线路故障辨识方法。首先,统计分析了输电线路故障类型和故障原因的分布特征,用于指导构建适用于... 针对如何利用实际故障录波数据,提取和放大故障特征差异,开展故障类型与故障原因辨识的问题,提出了基于格拉姆角场与迁移学习-ResNet的输电线路故障辨识方法。首先,统计分析了输电线路故障类型和故障原因的分布特征,用于指导构建适用于类不平衡问题的故障分类器。然后,利用格拉姆角场变换将采集得到的故障电压、电流时序信号转化为格拉姆角场图像,放大故障特征差异,作为故障分类器的输入。进一步,将生成的图像集输入搭建好的故障分类器进行网络训练和测试,输出输电线路故障类型和故障原因。最后,完全采用真实故障录波数据开展了算例分析。结果表明:所提方法对故障类型的辨识准确率达到了97.51%,对故障原因的辨识准确率达到了94.23%。并且将训练的故障辨识网络迁移至其他地区时,仍然具有较好的故障辨识效果和泛化性能。所提方法为基于暂态波形数据驱动的故障辨识提供了新方法,可以用于实际电网的输电线路故障辨识。 展开更多
关键词 输电线路 故障辨识 格拉姆角场 残差神经网络 迁移学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部