针对目前智能体间追逐过程中对智能体的情感因素考虑不充分的问题,提出一种新的解决方案:首先通过情感建模将个性、情感融入以两个智能体为基元的追逐行为中,使其运动更有多样性;其次通过博弈论引导决策的选取;最后收集对方运动的轨迹点...针对目前智能体间追逐过程中对智能体的情感因素考虑不充分的问题,提出一种新的解决方案:首先通过情感建模将个性、情感融入以两个智能体为基元的追逐行为中,使其运动更有多样性;其次通过博弈论引导决策的选取;最后收集对方运动的轨迹点,用Q-learning加强学习方式学习归纳,以寻找最优追逐运动路径。在Visual Studio 2012编译环境下得到整个具有可信度的运动动画以及智能体的情感、体力等因素的变化规律图像。演示结果表明,此解决方案对于智能体间高效的追逐有很好的促进作用。展开更多
文摘针对目前智能体间追逐过程中对智能体的情感因素考虑不充分的问题,提出一种新的解决方案:首先通过情感建模将个性、情感融入以两个智能体为基元的追逐行为中,使其运动更有多样性;其次通过博弈论引导决策的选取;最后收集对方运动的轨迹点,用Q-learning加强学习方式学习归纳,以寻找最优追逐运动路径。在Visual Studio 2012编译环境下得到整个具有可信度的运动动画以及智能体的情感、体力等因素的变化规律图像。演示结果表明,此解决方案对于智能体间高效的追逐有很好的促进作用。