期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多特征融合的驾驶员疲劳状态检测方法
被引量:
1
1
作者
方浩杰
董红召
+2 位作者
林少轩
罗建宇
方勇
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023年第7期1287-1296,共10页
针对现有疲劳状态检测方法无法适用于疫情防控下的驾驶员,利用改进后的YOLOv5目标检测算法,对驾驶员的面部区域进行检测,建立多特征融合的疲劳状态检测方法.针对公交驾驶特性,建立包含佩戴口罩和未佩戴口罩情况的图像标签数据.通过增加Y...
针对现有疲劳状态检测方法无法适用于疫情防控下的驾驶员,利用改进后的YOLOv5目标检测算法,对驾驶员的面部区域进行检测,建立多特征融合的疲劳状态检测方法.针对公交驾驶特性,建立包含佩戴口罩和未佩戴口罩情况的图像标签数据.通过增加YOLOv5模型的特征采样次数,提高眼、嘴、面部区域的检测精度.利用BiFPN网络结构保留多尺度的特征信息,使得预测网络对不同大小的目标更敏感,提升整体模型的检测能力.结合人脸关键点算法提出参数补偿机制,提高眨眼、打哈欠帧数的准确率.将多种疲劳参数融合归一化处理,开展疲劳等级划分.公开数据集NTHU和自制数据集的验证结果表明,该方法对佩戴口罩和未佩戴口罩情况均可以进行眨眼、打哈欠识别,可以准确地判断驾驶员的疲劳状态.
展开更多
关键词
驾驶安全
疲劳检测
YOLOv5
视频分析
模拟驾驶
下载PDF
职称材料
表情变换时序特征下的驾驶人情绪识别研究
2
作者
董红召
林少轩
佘翊妮
《中国公路学报》
EI
CAS
CSCD
北大核心
2024年第5期343-355,共13页
针对现有驾驶人情绪识别方法存在的识别实时性不足、识别精度较低等问题,提出一种表情识别及其时序情绪表达的驾驶人情绪识别方法。首先,建立VGG Lite驾驶人表情识别模型,在传统VGG Net模型结构上,通过改变卷积层堆叠结构以大幅减少模...
针对现有驾驶人情绪识别方法存在的识别实时性不足、识别精度较低等问题,提出一种表情识别及其时序情绪表达的驾驶人情绪识别方法。首先,建立VGG Lite驾驶人表情识别模型,在传统VGG Net模型结构上,通过改变卷积层堆叠结构以大幅减少模型的参数量,修改激活函数以增强模型对人脸表情中细节特征的表达能力,并在模型中增加性能优化层来提升模型的收敛性和泛化性。其次,分析表情时序变化与情绪状态之间的关系,研究时间序列演变的情绪表达方式,设计了包含表情时序转化、表情-情绪量化映射和时序情绪表达的驾驶人时序情绪识别方法。然后,采用Fer2013数据集,将所提出的VGG Lite驾驶人表情识别模型与其他模型进行比较验证,证明了该模型不仅可以保持高识别准确率,还有效降低了模型参数量,从而提高了识别速度,此外,采用自制数据集识别表情获得了98.8%的高准确率,证明了该模型能有效识别不同驾驶情境中的驾驶人表情。最后,以公交车驾驶人情绪识别为例对提出的时序情绪识别方法进行试验验证,结果表明,该方法能够准确识别驾驶人各种表情转换下的复杂情绪状态,平均识别率高于95%,比单帧情绪识别方法提升5%以上,每帧图像的情绪识别耗时平均低于0.03 s,每秒平均识别超过10帧,满足交通驾驶情绪识别的实时性要求。所提方法能够及时、准确地评估驾驶人的情绪状态,为提高交通系统整体安全性和效率提供了更有效的手段。
展开更多
关键词
交通工程
驾驶情绪
时序情绪识别
驾驶人情绪状态
驾驶安全
原文传递
题名
多特征融合的驾驶员疲劳状态检测方法
被引量:
1
1
作者
方浩杰
董红召
林少轩
罗建宇
方勇
机构
浙江工业大学智能交通系统联合研究所
杭州金通科技集团股份有限公司
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023年第7期1287-1296,共10页
基金
国家自然科学基金资助项目(61773347)
浙江公益技术研究资助项目(LGF19F030001)。
文摘
针对现有疲劳状态检测方法无法适用于疫情防控下的驾驶员,利用改进后的YOLOv5目标检测算法,对驾驶员的面部区域进行检测,建立多特征融合的疲劳状态检测方法.针对公交驾驶特性,建立包含佩戴口罩和未佩戴口罩情况的图像标签数据.通过增加YOLOv5模型的特征采样次数,提高眼、嘴、面部区域的检测精度.利用BiFPN网络结构保留多尺度的特征信息,使得预测网络对不同大小的目标更敏感,提升整体模型的检测能力.结合人脸关键点算法提出参数补偿机制,提高眨眼、打哈欠帧数的准确率.将多种疲劳参数融合归一化处理,开展疲劳等级划分.公开数据集NTHU和自制数据集的验证结果表明,该方法对佩戴口罩和未佩戴口罩情况均可以进行眨眼、打哈欠识别,可以准确地判断驾驶员的疲劳状态.
关键词
驾驶安全
疲劳检测
YOLOv5
视频分析
模拟驾驶
Keywords
driver safety
fatigue detection
YOLOv5
video analytics
driving simulation
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
表情变换时序特征下的驾驶人情绪识别研究
2
作者
董红召
林少轩
佘翊妮
机构
浙江工业大学智能交通系统联合研究所
出处
《中国公路学报》
EI
CAS
CSCD
北大核心
2024年第5期343-355,共13页
基金
国家自然科学基金项目(61773347)
浙江省“尖兵”“领雁”研发攻关计划项目(2024C01180)。
文摘
针对现有驾驶人情绪识别方法存在的识别实时性不足、识别精度较低等问题,提出一种表情识别及其时序情绪表达的驾驶人情绪识别方法。首先,建立VGG Lite驾驶人表情识别模型,在传统VGG Net模型结构上,通过改变卷积层堆叠结构以大幅减少模型的参数量,修改激活函数以增强模型对人脸表情中细节特征的表达能力,并在模型中增加性能优化层来提升模型的收敛性和泛化性。其次,分析表情时序变化与情绪状态之间的关系,研究时间序列演变的情绪表达方式,设计了包含表情时序转化、表情-情绪量化映射和时序情绪表达的驾驶人时序情绪识别方法。然后,采用Fer2013数据集,将所提出的VGG Lite驾驶人表情识别模型与其他模型进行比较验证,证明了该模型不仅可以保持高识别准确率,还有效降低了模型参数量,从而提高了识别速度,此外,采用自制数据集识别表情获得了98.8%的高准确率,证明了该模型能有效识别不同驾驶情境中的驾驶人表情。最后,以公交车驾驶人情绪识别为例对提出的时序情绪识别方法进行试验验证,结果表明,该方法能够准确识别驾驶人各种表情转换下的复杂情绪状态,平均识别率高于95%,比单帧情绪识别方法提升5%以上,每帧图像的情绪识别耗时平均低于0.03 s,每秒平均识别超过10帧,满足交通驾驶情绪识别的实时性要求。所提方法能够及时、准确地评估驾驶人的情绪状态,为提高交通系统整体安全性和效率提供了更有效的手段。
关键词
交通工程
驾驶情绪
时序情绪识别
驾驶人情绪状态
驾驶安全
Keywords
traffic engineering
driving emotion
temporal emotion recognition
driver emotional state
driver safety
分类号
U491.254 [交通运输工程—交通运输规划与管理]
原文传递
题名
作者
出处
发文年
被引量
操作
1
多特征融合的驾驶员疲劳状态检测方法
方浩杰
董红召
林少轩
罗建宇
方勇
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
2
表情变换时序特征下的驾驶人情绪识别研究
董红召
林少轩
佘翊妮
《中国公路学报》
EI
CAS
CSCD
北大核心
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部