The low-energy mutual neutralization(MN)reactions Na^(+)+H^(-)→Na(nl)+H have been studied by employing the full quantum-mechanical molecular-orbital close-coupling(QMOCC)method over a wide energy range of 10^(-3)-10^...The low-energy mutual neutralization(MN)reactions Na^(+)+H^(-)→Na(nl)+H have been studied by employing the full quantum-mechanical molecular-orbital close-coupling(QMOCC)method over a wide energy range of 10^(-3)-10^(3) e V/u.Total and state-selective cross sections have been investigated and compared with the available theoretical and experimental data,and the state-selective rate coefficients for the temperature range of 100-10000 K have been obtained.In the present work,all the necessary highly excited states are included,and the influences of rotational couplings and 10 active electrons are considered.It is found that in the energy below 10 e V/u,the Na(4s)state is the most dominant exit state with a contribution of approximately 78%to the branch fraction,which is in best agreement with the experimental data.For energies above 10 e V/u,the MN total cross section is larger than those obtained in other theoretical calculations and shows a slow decreasing trend because the main exit states change,when the energy is above 100 e V/u,the dominant exit state becomes the Na(3p)state,while the Na(4s)state becomes the third most important exit state.The datasets presented in this paper,including the potential energy curve,the radial and rotational couplings,the total and state-selective cross sections,are openly available at https://doi.org/10.57760/sciencedb.j00113.00112.展开更多
Carbon sulfide cation(CS^+) plays a dominant role in some astrophysical atmosphere environments. In this work, the rovibrational transition lines are computed for the lowest three electronic states, in which the inter...Carbon sulfide cation(CS^+) plays a dominant role in some astrophysical atmosphere environments. In this work, the rovibrational transition lines are computed for the lowest three electronic states, in which the internally contracted multireference configuration interaction approach(MRCI) with Davison size-extensivity correction(+Q) is employed to calculate the potential curves and dipole moments, and then the vibrational energies and spectroscopic constants are extracted. The Frank–Condon factors are calculated for the bands of X^2^+Σ^+–A^2Π and X^2Σ^+–B^2Σ^+systems, and the band of X^2Σ^+–A^2Π is in good agreement with the available experimental results. Transition dipole moments and the radiative lifetimes of the low-lying three states are evaluated. The opacities of the CS^+ molecule are computed at different temperatures under the pressure of 100 atms. It is found that as temperature increases, the band systems associated with different transitions for the three states become dim because of the increased population on the vibrational states and excited electronic states at high temperature.展开更多
SiO^+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO^+ is still limited. In this work, the stru...SiO^+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO^+ is still limited. In this work, the structures of 14 Λ–S states and 30? states of SiO^+ are computed with explicitly correlated configuration interaction method. On the basis of the calculated potential energy curves of those Λ–S states and ? states, the spectroscopic constants of bound states are evaluated, which are in good agreement with the latest experimental results. The predissociation mechanism of B^2Σ^+ state is illuminated with the aid of spin–orbit coupling matrix elements. On the basis of the calculated potential energy curves and transition dipole moments, the radiative lifetime for each of low-lying vibrational states B^2Σ^+and A^2Π is estimated. The laser cooling scheme of SiO^+ is proposed by employing B^2Σ^+–X^2Σ^+ transition. Finally, the vertical ionization energy values from SiO(X^1Σ^+) to ionic states: SiO^+ , X^2Σ^+, B^2Σ^+, and A^2Π are calculated, which agree well with experimental measurements.展开更多
CS molecule, which plays a key role in atmospheric and astrophysical circumstances, has drawn great attention for long time. Owing to its large state density, the detailed information of the electronic structure of CS...CS molecule, which plays a key role in atmospheric and astrophysical circumstances, has drawn great attention for long time. Owing to its large state density, the detailed information of the electronic structure of CS is still lacking. In this work, the high-level MRCI+Q method is used to compute the potential energy curves, dipole moments and transition dipole moments of singlet and triplet states correlated with the lowest dissociation limit of CS, based on which high accurate vibration-rotation levels and spectroscopic constants of bound states are evaluated. The opacity of CS relevant to atmospheric circumstance is computed at a pressure of 100 atms for different temperatures. With the increase of temperature,band systems from different transitions mingle with each other, and band boundaries become blurred, which are originated from the increased population on vibrational excited states and electronic excited states at high temperature.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12204288,11934004,and 12203106)。
文摘The low-energy mutual neutralization(MN)reactions Na^(+)+H^(-)→Na(nl)+H have been studied by employing the full quantum-mechanical molecular-orbital close-coupling(QMOCC)method over a wide energy range of 10^(-3)-10^(3) e V/u.Total and state-selective cross sections have been investigated and compared with the available theoretical and experimental data,and the state-selective rate coefficients for the temperature range of 100-10000 K have been obtained.In the present work,all the necessary highly excited states are included,and the influences of rotational couplings and 10 active electrons are considered.It is found that in the energy below 10 e V/u,the Na(4s)state is the most dominant exit state with a contribution of approximately 78%to the branch fraction,which is in best agreement with the experimental data.For energies above 10 e V/u,the MN total cross section is larger than those obtained in other theoretical calculations and shows a slow decreasing trend because the main exit states change,when the energy is above 100 e V/u,the dominant exit state becomes the Na(3p)state,while the Na(4s)state becomes the third most important exit state.The datasets presented in this paper,including the potential energy curve,the radial and rotational couplings,the total and state-selective cross sections,are openly available at https://doi.org/10.57760/sciencedb.j00113.00112.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0402300 and 2017YFA0403200)the National Natural Science Foundation of China(Grant Nos.11474032,11534011,U15302611,and 1404180)China Postdoctoral Science Foundation(Grant No.2018M631404)
文摘Carbon sulfide cation(CS^+) plays a dominant role in some astrophysical atmosphere environments. In this work, the rovibrational transition lines are computed for the lowest three electronic states, in which the internally contracted multireference configuration interaction approach(MRCI) with Davison size-extensivity correction(+Q) is employed to calculate the potential curves and dipole moments, and then the vibrational energies and spectroscopic constants are extracted. The Frank–Condon factors are calculated for the bands of X^2^+Σ^+–A^2Π and X^2Σ^+–B^2Σ^+systems, and the band of X^2Σ^+–A^2Π is in good agreement with the available experimental results. Transition dipole moments and the radiative lifetimes of the low-lying three states are evaluated. The opacities of the CS^+ molecule are computed at different temperatures under the pressure of 100 atms. It is found that as temperature increases, the band systems associated with different transitions for the three states become dim because of the increased population on the vibrational states and excited electronic states at high temperature.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300)the Science Challenge Project(Grant No.TZ2016005)+4 种基金the China Postdoctoral Science Foundation(Grant No.2018M631404)the National Natural Science Foundation of China(Grant No.11404180)the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province,China(Grant No.UNPYSCT-2015095)the Natural Science Research Project of Education Department of Anhui Province,China(Grant No.KJ2018A0342)the Key Program of Excellent Youth Talent Project of Fuyang Normal University,China(Grant No.rcxm201801)
文摘SiO^+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO^+ is still limited. In this work, the structures of 14 Λ–S states and 30? states of SiO^+ are computed with explicitly correlated configuration interaction method. On the basis of the calculated potential energy curves of those Λ–S states and ? states, the spectroscopic constants of bound states are evaluated, which are in good agreement with the latest experimental results. The predissociation mechanism of B^2Σ^+ state is illuminated with the aid of spin–orbit coupling matrix elements. On the basis of the calculated potential energy curves and transition dipole moments, the radiative lifetime for each of low-lying vibrational states B^2Σ^+and A^2Π is estimated. The laser cooling scheme of SiO^+ is proposed by employing B^2Σ^+–X^2Σ^+ transition. Finally, the vertical ionization energy values from SiO(X^1Σ^+) to ionic states: SiO^+ , X^2Σ^+, B^2Σ^+, and A^2Π are calculated, which agree well with experimental measurements.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11934004 and 12203106)Fundamental Research Funds in Heilongjiang Province Universities, China (Grant No. 145109127)the Scientific Research Plan Projects of Heilongjiang Education Department, China (Grant Nos. WNCGQJKF202103 and DWCGQKF202104)。
文摘CS molecule, which plays a key role in atmospheric and astrophysical circumstances, has drawn great attention for long time. Owing to its large state density, the detailed information of the electronic structure of CS is still lacking. In this work, the high-level MRCI+Q method is used to compute the potential energy curves, dipole moments and transition dipole moments of singlet and triplet states correlated with the lowest dissociation limit of CS, based on which high accurate vibration-rotation levels and spectroscopic constants of bound states are evaluated. The opacity of CS relevant to atmospheric circumstance is computed at a pressure of 100 atms for different temperatures. With the increase of temperature,band systems from different transitions mingle with each other, and band boundaries become blurred, which are originated from the increased population on vibrational excited states and electronic excited states at high temperature.