期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于信息熵和深度学习的无参考图像质量评价方法研究
被引量:
16
1
作者
卢鹏
林根巧
邹国良
《计算机应用研究》
CSCD
北大核心
2018年第11期3508-3512,共5页
现有使用卷积神经网络进行图像质量评价的方法,存在训练数据量不足、局部图像块失真、分数不能确定等问题。针对这些问题,提出了一种基于信息熵的卷积网络模型IQA-CNN。在考虑信息熵对图像质量影响的基础上,将LIVE数据集中的失真图像进...
现有使用卷积神经网络进行图像质量评价的方法,存在训练数据量不足、局部图像块失真、分数不能确定等问题。针对这些问题,提出了一种基于信息熵的卷积网络模型IQA-CNN。在考虑信息熵对图像质量影响的基础上,将LIVE数据集中的失真图像进行分块处理,以扩大训练集;计算各分块的信息熵作为分块重要性权重,代表其对失真图像质量的影响程度,并基于该权重对卷积神经网络的损失函数进行调整。在两个数据集上的交叉验证结果表明,提出的模型能很好地预测失真图像的质量,预测结果更接近人类视觉感知。
展开更多
关键词
无参考图像质量评价
深度学习
归一化
损失函数
信息熵
下载PDF
职称材料
题名
基于信息熵和深度学习的无参考图像质量评价方法研究
被引量:
16
1
作者
卢鹏
林根巧
邹国良
机构
上海海洋大学信息学院
出处
《计算机应用研究》
CSCD
北大核心
2018年第11期3508-3512,共5页
基金
国家自然科学基金资助项目(41671431)
文摘
现有使用卷积神经网络进行图像质量评价的方法,存在训练数据量不足、局部图像块失真、分数不能确定等问题。针对这些问题,提出了一种基于信息熵的卷积网络模型IQA-CNN。在考虑信息熵对图像质量影响的基础上,将LIVE数据集中的失真图像进行分块处理,以扩大训练集;计算各分块的信息熵作为分块重要性权重,代表其对失真图像质量的影响程度,并基于该权重对卷积神经网络的损失函数进行调整。在两个数据集上的交叉验证结果表明,提出的模型能很好地预测失真图像的质量,预测结果更接近人类视觉感知。
关键词
无参考图像质量评价
深度学习
归一化
损失函数
信息熵
Keywords
no-reference image quality assessment
deep learning
normalization
loss function
information entropy
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于信息熵和深度学习的无参考图像质量评价方法研究
卢鹏
林根巧
邹国良
《计算机应用研究》
CSCD
北大核心
2018
16
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部