期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5+DeepSort的柑橘果实识别与计数研究 被引量:5
1
作者 庄昊龙 周嘉灏 +2 位作者 林毓翰 彭海深 林宏宇 《南方农机》 2023年第15期9-13,共5页
【目的】传统的水果检测识别技术具有一定的环境适应缺陷性和主观性,通常是对水果的纹理、颜色、形状等外表特征进行提取和识别,为实现对柑橘果实产量的精准预测,需研究温室环境下对柑橘果实的快速识别及计数。【方法】项目组选取从柑... 【目的】传统的水果检测识别技术具有一定的环境适应缺陷性和主观性,通常是对水果的纹理、颜色、形状等外表特征进行提取和识别,为实现对柑橘果实产量的精准预测,需研究温室环境下对柑橘果实的快速识别及计数。【方法】项目组选取从柑橘种植园中多场景拍摄的5926张图片作为训练集、738张图片作为验证集、608张图片作为测试集,采用DeepSort算法结合改进YOLOv5算法的方式,通过在主干部分加入SE注意力机制以实现对算法的改进,从而提高对柑橘果实的识别效果;在柑橘果实计数部分,主要采用DeepSort算法给予每个柑橘果实单独的ID编号以实现对柑橘果实的计数。【结果】改进后的YOLOv5算法对柑橘果实的平均识别准确率为93.712%,相比改进前的CenterNet算法、EfficientDet算法、SSD算法、YOLOv4算法、YOLOX算法,平均识别准确率提升了1.354个百分点,并且精确度和召回率也有一定的提升,结合DeepSort算法后对柑橘果实的平均多目标跟踪准确率为88.465%,可较准确地实现对柑橘果实的计数。【结论】DeepSort算法具有提升目标被环境等其他因素遮挡情况下的计数效果的优点,加入SE注意力机制对YOLOv5算法进行改进,对柑橘果实具有更好的识别效果。 展开更多
关键词 YOLOv5算法 DeepSort算法 SE注意力机制 柑橘果实
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部