We reported a study of tunnel magnetoresistance(TMR)effect in single manganite nanowire via the combination of magnetotransport and magnetic force microscopy imaging.TMR value up to 290%has been observed in single(La1...We reported a study of tunnel magnetoresistance(TMR)effect in single manganite nanowire via the combination of magnetotransport and magnetic force microscopy imaging.TMR value up to 290%has been observed in single(La1-yPry)1-x CaxMnO3 nanowires with varying width.We find that the TMR effect can be explained in the scenario of opening and blockade of conducting channels from inherent magnetic domain evolutions.Our findings provide a new route to fabricate TMR junctions and point towards future improvements in complex oxide-based TMR spintronics.展开更多
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0300702)Shanghai Municipal Natural Science Foundation,China(Grant Nos.19ZR1402800,18JC1411400,18ZR1403200,and 17ZR1442600)+1 种基金the Program of Shanghai Academic Research Leader,China(Grant Nos.18XD1400600 and 17XD1400400)the China Postdoctoral Science Foundation(Grant Nos.2016M601488 and 2017T100265)
文摘We reported a study of tunnel magnetoresistance(TMR)effect in single manganite nanowire via the combination of magnetotransport and magnetic force microscopy imaging.TMR value up to 290%has been observed in single(La1-yPry)1-x CaxMnO3 nanowires with varying width.We find that the TMR effect can be explained in the scenario of opening and blockade of conducting channels from inherent magnetic domain evolutions.Our findings provide a new route to fabricate TMR junctions and point towards future improvements in complex oxide-based TMR spintronics.