期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于数据增强的多层次论点立场分类方法
1
作者
林玩聪
韩明杰
靳婷
《广西师范大学学报(自然科学版)》
CAS
北大核心
2023年第6期62-69,共8页
本文旨在研究论点抽取技术,该技术的目的在于识别、抽取和分析文本信息中的论辩成分与结构。通过从若干句子中提取与辩题相关的论点,并判断该论点的立场为支持或反对,来完成对论辩事实文本的智能分析。以往的研究主要基于卷积神经网络...
本文旨在研究论点抽取技术,该技术的目的在于识别、抽取和分析文本信息中的论辩成分与结构。通过从若干句子中提取与辩题相关的论点,并判断该论点的立场为支持或反对,来完成对论辩事实文本的智能分析。以往的研究主要基于卷积神经网络和循环神经网络等深度学习模型,网络结构简单,无法从论辩中学习到更深层次的特征。为学习到论辩文本中更丰富的语义信息来对论辩立场进行分类,本文提出一种增强的RoBERTa模型EnhRoBERTa。该模型以预训练语言模型RoBERTa为基础,充分利用多层次的多头注意力机制,并且提取浅层和深层语义表示进行融合,从多个特征维度进一步理解论点和辩题之间的关系,完成对论点的立场分类。然而,考虑到论点对立场的分布不均衡问题,本文采用数据增强技术,增强对少样本的学习能力。在CCAC2022比赛数据集上的实验结果表明:本文模型相较于基线模型可以提取到更丰富的文本特征,取得61.4%的F1-score,比未使用预训练的基线模型TextCNN和BiLSTM提高约19个百分点,比RoBERTa提高3.8个百分点。
展开更多
关键词
立场分类
数据增强
预训练语言模型
多头注意力
多层特征提取
下载PDF
职称材料
题名
基于数据增强的多层次论点立场分类方法
1
作者
林玩聪
韩明杰
靳婷
机构
海南大学计算机科学与技术学院
出处
《广西师范大学学报(自然科学版)》
CAS
北大核心
2023年第6期62-69,共8页
基金
国家自然科学基金(61862021)
海南省自然科学基金(620RC565)。
文摘
本文旨在研究论点抽取技术,该技术的目的在于识别、抽取和分析文本信息中的论辩成分与结构。通过从若干句子中提取与辩题相关的论点,并判断该论点的立场为支持或反对,来完成对论辩事实文本的智能分析。以往的研究主要基于卷积神经网络和循环神经网络等深度学习模型,网络结构简单,无法从论辩中学习到更深层次的特征。为学习到论辩文本中更丰富的语义信息来对论辩立场进行分类,本文提出一种增强的RoBERTa模型EnhRoBERTa。该模型以预训练语言模型RoBERTa为基础,充分利用多层次的多头注意力机制,并且提取浅层和深层语义表示进行融合,从多个特征维度进一步理解论点和辩题之间的关系,完成对论点的立场分类。然而,考虑到论点对立场的分布不均衡问题,本文采用数据增强技术,增强对少样本的学习能力。在CCAC2022比赛数据集上的实验结果表明:本文模型相较于基线模型可以提取到更丰富的文本特征,取得61.4%的F1-score,比未使用预训练的基线模型TextCNN和BiLSTM提高约19个百分点,比RoBERTa提高3.8个百分点。
关键词
立场分类
数据增强
预训练语言模型
多头注意力
多层特征提取
Keywords
position classification
data augmentation
pre-training language model
multiple attention
multi-layer feature extraction
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于数据增强的多层次论点立场分类方法
林玩聪
韩明杰
靳婷
《广西师范大学学报(自然科学版)》
CAS
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部