期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
全矢谱和稀疏分解结合的轴承故障特征提取 被引量:5
1
作者 林辉翼 郝伟 +1 位作者 郝旺身 董辛旻 《机械设计与制造》 北大核心 2019年第6期146-149,共4页
针对滚动轴承在故障早期特征信号微弱、故障特征提取困难以及单通道分析方法信息利用不充分等问题,提出了一种基于稀疏分解与全矢谱相结合的滚动轴承早期微弱故障特征提取方法。首先,在已构造的冗余字典基础上对滚动轴承同源双通道早期... 针对滚动轴承在故障早期特征信号微弱、故障特征提取困难以及单通道分析方法信息利用不充分等问题,提出了一种基于稀疏分解与全矢谱相结合的滚动轴承早期微弱故障特征提取方法。首先,在已构造的冗余字典基础上对滚动轴承同源双通道早期故障信号分别进行稀疏分解,得到各自的稀疏信号;然后,将同源双通道稀疏信号进行全矢信息融合;最后,对融合后的信号进行包络解调分析,以提取出故障特征频率。该方法将全矢谱拓展到早期微弱故障诊断领域,并通过实验验证了其在早期微弱故障特征提取方面的有效性。 展开更多
关键词 稀疏分解 全矢谱 特征提取 信息融合 滚动轴承 故障诊断
下载PDF
快速谱峭度与全矢谱结合的滚动轴承故障诊断 被引量:4
2
作者 林辉翼 郝伟 +1 位作者 郝旺身 高亚娟 《机械设计与制造》 北大核心 2019年第9期5-8,共4页
针对滚动轴承信号的非平稳调制特性以及单通道分析易造成信息遗漏的缺点,提出了一种基于快速谱峭度算法(Fast Kurtogram)和全矢谱技术的故障特征提取方法。首先利用快速谱峭度算法自适应地确定带通滤波器的最佳中心频率与带宽等参数,根... 针对滚动轴承信号的非平稳调制特性以及单通道分析易造成信息遗漏的缺点,提出了一种基于快速谱峭度算法(Fast Kurtogram)和全矢谱技术的故障特征提取方法。首先利用快速谱峭度算法自适应地确定带通滤波器的最佳中心频率与带宽等参数,根据所选参数构建带通滤波器对双通道故障信号进行滤波,以提高其信噪比;然后对滤波后的信号进行全矢信息融合以保证故障信息的全面性;最后对信息融合后的信号进行包络解调分析以获取振动信号的故障特征信息。实验分析结果表明,该方法能有效地提取滚动轴承的故障特征频率,并提高故障诊断的准确性。 展开更多
关键词 快速谱峭度 全矢谱 故障诊断 滚动轴承 特征提取 带通滤波
下载PDF
基于全矢稀疏编码的滚动轴承故障识别方法 被引量:1
3
作者 郝伟 林辉翼 +2 位作者 郝旺身 高亚娟 董辛旻 《郑州大学学报(工学版)》 CAS 北大核心 2019年第3期31-35,47,共6页
针对利用时域信号进行稀疏编码存在的特征时移现象以及单通道信号分析易造成信息遗漏等问题,将全矢谱技术与稀疏编码相结合,提出了一种新的滚动轴承故障识别方法:首先对各状态下的滚动轴承同源双通道信号进行全矢信息融合;然后将融合后... 针对利用时域信号进行稀疏编码存在的特征时移现象以及单通道信号分析易造成信息遗漏等问题,将全矢谱技术与稀疏编码相结合,提出了一种新的滚动轴承故障识别方法:首先对各状态下的滚动轴承同源双通道信号进行全矢信息融合;然后将融合后得到的主振矢信号进行字典学习,以构造各类信号的冗余字典;最后利用各类字典分别重构测试样本,将其重构误差的大小作为判断样本状态类别的依据.该方法通过将时域信号全矢融合后转化为主振矢信号,其训练样本中所包含的信息更加全面准确,且免去了特征提取步骤,减少了人为因素的影响.实验结果表明,该方法计算效率高,实用性好,可有效判断出滚动轴承的故障类型. 展开更多
关键词 全矢谱 稀疏编码 故障诊断 滚动轴承 字典学习
下载PDF
基于自动编码器和SVM的轴承故障诊断方法 被引量:7
4
作者 雷文平 吴小龙 +1 位作者 陈超宇 林辉翼 《郑州大学学报(工学版)》 CAS 北大核心 2018年第5期68-72,共5页
支持向量机(support vector machine,SVM)应用于轴承故障诊断前,首先要提取轴承的特征信号.在以往的特征信号提取中,往往是依据已有的知识模型进行特征筛选.随着近年来深度神经网络(deep neural network,DNN)的应用与推广,自动编码器(au... 支持向量机(support vector machine,SVM)应用于轴承故障诊断前,首先要提取轴承的特征信号.在以往的特征信号提取中,往往是依据已有的知识模型进行特征筛选.随着近年来深度神经网络(deep neural network,DNN)的应用与推广,自动编码器(auto-encoder,AE)在特征提取方面的优势尤为突出.作为一种无监督的学习方式,AE能够基于数据驱动提取信号的特征值,使得特征提取不再依赖于先验知识,从而让整个故障诊断过程更具智能化.本文运用改进的AE、去噪自动编码器(denoising autoencoder,DAE),进行轴承信号特征提取,并用SVM进行故障诊断.最终与基于经验模态分解(empirical mode decomposition,EMD)能量熵的SVM对比,反映具有无监督学习方式的DAE-SVM在轴承故障诊断方面的优越性,诊断准确率接近100%. 展开更多
关键词 支持向量机 自动编码器 无监督特征提取 经验模态分解 信息熵 故障诊断
下载PDF
全矢ITD和KPCA结合的滚动轴承故障诊断 被引量:11
5
作者 高亚娟 陈磊 +1 位作者 林辉翼 韩捷 《机械设计与制造》 北大核心 2019年第4期154-157,共4页
针对在滚动轴承故障检测和诊断中获取的单通道信息不全面、不准确等问题,提出了全矢本征时间尺度分解(ITD)和核主元分析(KPCA)相结合的方法以进行故障检测与诊断。首先采用全矢ITD对正常运行状态下的同源双通道原始样本数据进行信息融合... 针对在滚动轴承故障检测和诊断中获取的单通道信息不全面、不准确等问题,提出了全矢本征时间尺度分解(ITD)和核主元分析(KPCA)相结合的方法以进行故障检测与诊断。首先采用全矢ITD对正常运行状态下的同源双通道原始样本数据进行信息融合,得到全矢融合后的主振矢数据,并建立KPCA模型,克服了单通道振动信号信息不完整的缺点。然后运用KPCA模型对待测样本数据进行在线监控,当该模型的T2和SPE统计量超过已设定的控制限时,采用全矢Hilbert包络分析提取故障数据的特征频率以进行故障诊断。实验结果表明,该方法既能较好地检测出滚动轴承的运行状态,又能准确有效地诊断故障类型。 展开更多
关键词 核主元分析 ITD 全矢谱 故障诊断 滚动轴承 信息融合
下载PDF
全矢KPCA和AR模型结合的滚动轴承故障预测方法 被引量:10
6
作者 高亚娟 陈磊 +1 位作者 林辉翼 韩捷 《机械设计与制造》 北大核心 2019年第11期20-24,共5页
由于单一传感器获取的振动信号具有片面性,采用全矢谱信息融合技术对滚动轴承信号进行特征提取,并与KPCA模型和AR时序预测方法相结合进行故障预测。首先,采用全矢谱技术提取实验数据中的特征主振矢;然后,采用KPCA方法对得到的特征主振... 由于单一传感器获取的振动信号具有片面性,采用全矢谱信息融合技术对滚动轴承信号进行特征提取,并与KPCA模型和AR时序预测方法相结合进行故障预测。首先,采用全矢谱技术提取实验数据中的特征主振矢;然后,采用KPCA方法对得到的特征主振矢进行融合,消除数据冗余,并建立全矢KPCA监控模型;最后,将测试样本输入全矢KPCA监控模型并输出T2和SPE统计量,将其值作为AR预测模型的输入,预测其变化情况,并根据其预测值超出KPCA监控模型的控制限与否来判断设备是否出现故障。实验结果表明,该方法既能较好地预测出滚动轴承的运行状态,又能进一步追踪故障发展趋势,为及时做好维修措施提供理论依据。 展开更多
关键词 故障预测 核主元分析 全矢谱 AR模型 滚动轴承 信息融合
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部