期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Faster R-CNN的缝隙检测与提取算法 被引量:8
1
作者 肖创 柏鳗晏 禹晶 《北京工业大学学报》 EI CAS CSCD 北大核心 2021年第2期135-146,共12页
为了使快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)适用于小尺寸结构缝隙目标检测的应用,提出了一种基于Faster R-CNN的缝隙检测与提取算法,保留了小尺寸结构目标的细节信息,并提升了检测准... 为了使快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)适用于小尺寸结构缝隙目标检测的应用,提出了一种基于Faster R-CNN的缝隙检测与提取算法,保留了小尺寸结构目标的细节信息,并提升了检测准确率.该算法分为缝隙检测和缝隙提取2个阶段.首先,在faster R-CNN的目标检测框架下,选取ImageNet数据集上的视觉几何组(visual geometry group,VGG)网络预训练模型作为特征提取网络,调整网络模型使其适应具有小尺寸结构的缝隙目标,并通过缝隙检测网络的训练确定最优的网络超参数,获得缝隙目标边框.然后,根据对目标区域的分析,提出基于数学形态学算法的缝隙提取算法,将缝隙目标从背景中分割出来.最终通过去噪、断裂连接和细化操作提取单像素宽缝隙目标,通过统计单像素宽缝隙目标的像素点个数得到缝隙目标长度值.实验结果表明,该算法可准确且完整地提取缝隙目标,在铁轨裂缝数据集上平均准确率达到63.87%,在道路裂缝数据集上的F1-score指标达到65.6%. 展开更多
关键词 深度学习 卷积神经网络 缝隙检测 缝隙提取 快速区域卷积神经网络 视觉几何组
下载PDF
SSD与时空特征融合的视频目标检测 被引量:6
2
作者 尉婉青 禹晶 +1 位作者 柏鳗晏 肖创 《中国图象图形学报》 CSCD 北大核心 2021年第3期542-555,共14页
目的视频目标检测旨在序列图像中定位运动目标,并为各个目标分配指定的类别标签。视频目标检测存在目标模糊和多目标遮挡等问题,现有的大部分视频目标检测方法是在静态图像目标检测的基础上,通过考虑时空一致性来提高运动目标检测的准确... 目的视频目标检测旨在序列图像中定位运动目标,并为各个目标分配指定的类别标签。视频目标检测存在目标模糊和多目标遮挡等问题,现有的大部分视频目标检测方法是在静态图像目标检测的基础上,通过考虑时空一致性来提高运动目标检测的准确率,但由于运动目标存在遮挡、模糊等现象,目前视频目标检测的鲁棒性不高。为此,本文提出了一种单阶段多框检测(single shot multibox detector,SSD)与时空特征融合的视频目标检测模型。方法在单阶段目标检测的SSD模型框架下,利用光流网络估计当前帧与近邻帧之间的光流场,结合多个近邻帧的特征对当前帧的特征进行运动补偿,并利用特征金字塔网络提取多尺度特征用于检测不同尺寸的目标,最后通过高低层特征融合增强低层特征的语义信息。结果实验结果表明,本文模型在Image Net VID(Imagelvet for video object detetion)数据集上的mAP(mean average precision)为72.0%,相对于TCN(temporal convolutional networks)模型、TPN+LSTM(tubelet proposal network and long short term memory network)模型和SSD+孪生网络模型,分别提高了24.5%、3.6%和2.5%,在不同结构网络模型上的分离实验进一步验证了本文模型的有效性。结论本文模型利用视频特有的时间相关性和空间相关性,通过时空特征融合提高了视频目标检测的准确率,较好地解决了视频目标检测中目标漏检和误检的问题。 展开更多
关键词 目标检测 单阶段多框检测 特征融合 光流 特征金字塔网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部