期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
面向Vision Transformer模型的剪枝技术研究
1
作者 查秉坤 李朋阳 陈小柏 《软件》 2024年第3期83-86,97,共5页
本文针对Vision Transformer(ViT)模型开展剪枝技术研究,探索了多头自注意力机制中的QKV(Query、Key、Value)权重和全连接层(Fully Connected,FC)权重的剪枝问题。针对ViT模型本文提出了3组剪枝方案:只对QKV剪枝、只对FC剪枝以及对QKV... 本文针对Vision Transformer(ViT)模型开展剪枝技术研究,探索了多头自注意力机制中的QKV(Query、Key、Value)权重和全连接层(Fully Connected,FC)权重的剪枝问题。针对ViT模型本文提出了3组剪枝方案:只对QKV剪枝、只对FC剪枝以及对QKV和FC同时进行剪枝,以探究不同剪枝策略对ViT模型准确率和模型参数压缩率的影响。本文开展的研究工作为深度学习模型的压缩和优化提供了重要参考,对于实际应用中的模型精简和性能优化具有指导意义。 展开更多
关键词 Vision Transformer模型 剪枝 准确率
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部