期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于模型群的重型货车交通安全风险因素分析
1
作者 柯星安 赵丹 +2 位作者 王秋鸿 胡越宁 牛帅 《交通信息与安全》 CSCD 北大核心 2024年第4期72-80,共9页
为了深入探究重型货车交通事故的风险因素及发生机理,基于中国某省2016—2021年重型货车交通事故数据,构建集成随机森林、Logistic回归、地理加权Logistic回归和贝叶斯网络模型的模型群,对风险因素的影响程度、空间异质性及其因果路径... 为了深入探究重型货车交通事故的风险因素及发生机理,基于中国某省2016—2021年重型货车交通事故数据,构建集成随机森林、Logistic回归、地理加权Logistic回归和贝叶斯网络模型的模型群,对风险因素的影响程度、空间异质性及其因果路径进行分析。结果显示:①重型货车行驶状态、碰撞形态等10个因素对风险存在显著影响,其中农村交通参与者、正面和侧面碰撞在不同模型中的影响程度有轻微差异,追尾碰撞的影响程度在地理加权Logistic回归模型中较贝叶斯网络模型更高。②重型货车右转、存在违法行为、涉及弱势道路使用者时极容易发生亡人事故,分别使风险增加了41.9%,39.3%和39.0%。③以碰撞形态作为中介变量,重型货车行驶状态、事故另一方交通方式和年龄这3类因素与亡人事故风险的因果路径分析表明:当重型货车与弱势道路使用者发生侧面碰撞时,亡人事故风险比发生刮擦且事故另一方为其他类型机动车提高64.4%,为重型货车交通事故典型危险场景;对方年龄为30岁及以下时,追尾碰撞概率较30~60岁以及60岁以上分别增加10.3%和26.1%。④具有空间异质性的风险因素中,正面碰撞的空间异质性强度最大,右转的空间异质性强度最小。结论表明:基于模型群的分析框架可得到重型货车交通安全风险显著影响因素,可验证因素在不同模型中影响程度的差异性及空间异质性。 展开更多
关键词 交通安全 重型货车 风险因素 贝叶斯网络 地理加权Logistic回归 因果路径
下载PDF
基于Logistic-TAN的电动自行车交通事故严重程度影响因素分析 被引量:3
2
作者 柯星安 丁立民 赵丹 《中国人民公安大学学报(自然科学版)》 2023年第2期47-54,共8页
为提高电动自行车交通安全管理水平,基于Logistic回归与树型贝叶斯网络(Tree Augmented Naive Bayes,TAN)的组合方法,探究电动自行车交通事故严重程度的影响因素。首先,收集某市2016~2020年电动自行车交通事故数据,将事故严重程度作为... 为提高电动自行车交通安全管理水平,基于Logistic回归与树型贝叶斯网络(Tree Augmented Naive Bayes,TAN)的组合方法,探究电动自行车交通事故严重程度的影响因素。首先,收集某市2016~2020年电动自行车交通事故数据,将事故严重程度作为因变量,电动自行车驾驶人年龄等类别属性作为自变量,构建二分类Logistic回归模型;其次,根据回归模型结果,选择显著的自变量和影响因素,在TAN模型中进行单一证据变量以及多证据变量耦合推理分析,量化其影响大小,并分析数据中的异质性。结果表明,11个因素对因变量有显著影响,其中“大中型车辆”是最重要的影响因素;“右转”和“追尾碰撞”两个因素对因变量具有异质影响;电动自行车与右转的大中型车辆发生追尾碰撞的死亡事故概率最高,达到81.1%。 展开更多
关键词 交通管理工程 事故严重程度 LOGISTIC回归 树型贝叶斯网络 电动自行车 异质性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部