期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Teager峰值能量的低转速轴承故障特征提取方法 被引量:11
1
作者 柯燕亮 王华庆 +2 位作者 唐刚 袁洪芳 李岭阳 《振动与冲击》 EI CSCD 北大核心 2017年第11期124-128,133,共6页
峰值冲击是轴承故障信号中的重要特征之一,明显的峰值冲击有利于其故障诊断,而低转速工况下轴承故障由于振动能量小,峰值冲击微弱,导致故障特征容易被噪声淹没,通常无法通过包络分析等方法提取。为了增强微弱故障信号中的峰值冲击,提取... 峰值冲击是轴承故障信号中的重要特征之一,明显的峰值冲击有利于其故障诊断,而低转速工况下轴承故障由于振动能量小,峰值冲击微弱,导致故障特征容易被噪声淹没,通常无法通过包络分析等方法提取。为了增强微弱故障信号中的峰值冲击,提取低转速轴承故障特征,提出了基于Teager峰值能量的故障特征提取方法。采用移动窗口截取原信号,计算截取信号段的峰峰值,从而构造峰峰值特征波形,增强故障信号中的峰值冲击;利用Teager能量算子对峰峰值特征波形进行解调,抑制噪声干扰,提取瞬时冲击成分;根据提取的Teager能量频谱判断轴承的运行状态。实验结果表明,该方法有效提取了低转速轴承的冲击特征,实现了故障的诊断。 展开更多
关键词 低转速轴承 故障诊断 峰峰值特征波形 TEAGER能量算子
下载PDF
基于LTSA与K-最近邻分类器的故障诊断 被引量:12
2
作者 姜景升 王华庆 +1 位作者 柯燕亮 向伟 《振动与冲击》 EI CSCD 北大核心 2017年第11期134-139,共6页
针对局部切空间排列算法(LTSA)的效果受近邻数k值影响较大的缺点,提出基于聚类准则的LTSA与K-最近邻分类器的故障诊断模型。基于振动信号的时域特征构建高维特征矩阵;对高维矩阵进行标准化预处理,依据聚类准则确定局部切空间排列中的最... 针对局部切空间排列算法(LTSA)的效果受近邻数k值影响较大的缺点,提出基于聚类准则的LTSA与K-最近邻分类器的故障诊断模型。基于振动信号的时域特征构建高维特征矩阵;对高维矩阵进行标准化预处理,依据聚类准则确定局部切空间排列中的最佳近邻数k,运用LTSA提取高维矩阵的低维特征向量;将提取的低维特征向量利用K-最近邻分类器进行故障模式识别。采用轴承诊断实验系统进行验证,结果表明,基于聚类准则的优化方法可有效地克服近邻数k选择的盲目性,提高了局部切空间的降维精度和故障模式识别正确率,其在轴承时域特征维数约简方面,效果优于主成分分析(PCA)与拉普拉斯特征映射(LE),适用于轴承故障诊断。 展开更多
关键词 局部切空间排列 K-最近邻分类器 聚类准则 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部