Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is f...Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is focused on the stable walking and balance control of quadruped robots. 24 kinds of walking gaits are analyzed in order to derive the most stable and smoothest walking gait. Considering the inefficiency to model a terrain by its specified appearance, a uniform terrain model is established and by means of kinematic analysis, a method to adjust the body posture and center of gravity (COG) height is presented. Simulations demonstrate the effectiveness of the proposed meth- od and the improvement of the adaptation of quadruped robots on rough terrain.展开更多
In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion....In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.展开更多
基金Supported by the National High Technology Research and Development Program of China(863Program)(2011AA041002)
文摘Quadruped robot is considered to be the most practical locomotion machine to negotiate uneven terrain, and shows superb stability during static walking. To improve the ability to go over rough terrain, this paper is focused on the stable walking and balance control of quadruped robots. 24 kinds of walking gaits are analyzed in order to derive the most stable and smoothest walking gait. Considering the inefficiency to model a terrain by its specified appearance, a uniform terrain model is established and by means of kinematic analysis, a method to adjust the body posture and center of gravity (COG) height is presented. Simulations demonstrate the effectiveness of the proposed meth- od and the improvement of the adaptation of quadruped robots on rough terrain.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2011AA041002)
文摘In the realm of quadruped robot locomotion,compliance control is imperative to handle impacts when negotiating unstructured terrains.At the same time,kinematic tracking accuracy should be guaranteed during locomotion.To meet both demands,ajoint space compliance controller is designed,so that compliance can be achieved in stance phase while position tracking performance can be guaranteed in swing phase.Unlike operational space compliance control,the joint space compliance control method is easy to implement and does not depend on robot dynamics.As for each joint actuator,high performance force control is of great importance for compliance design.Therefore,a nonlinear PI controller based on feedback linearization is proposed for the hydraulic actuator force control.Besides,an outer position loop(compliance loop)is closed for each joint.Experiments are carried out to verify the force controller and compliance of the hydraulic actuator.The robot leg compliance is assessed by a virtual prototyping simulation.