期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征增强的三维点云语义分割 被引量:3
1
作者 鲁斌 柳杰林 《计算机应用》 CSCD 北大核心 2023年第6期1818-1825,共8页
为挖掘感知点云几何特征并通过特征增强的方式进一步提高点云语义分割效果,提出了一种基于特征增强的点云语义分割网络。首先,通过设计点云的几何特征感知(GFSOP)模块赋予网络点云局部几何结构的感知能力,捕获点间的空间特征以强化语义... 为挖掘感知点云几何特征并通过特征增强的方式进一步提高点云语义分割效果,提出了一种基于特征增强的点云语义分割网络。首先,通过设计点云的几何特征感知(GFSOP)模块赋予网络点云局部几何结构的感知能力,捕获点间的空间特征以强化语义表征,并利用分层提取特征思想获得多尺度特征。同时,使用空间注意力和通道注意力融合预测点云语义标签,并通过强化空间关联性和通道依赖性提升分割性能。在室内数据集S3DIS(Stanford large-scale 3D Indoor Spaces)上的实验结果显示,所提网络相较于PointNet++在平均交并比(mIoU)上提升了5.7个百分点,在总体准确度(OA)上提升了3.1个百分点,且在存在噪声、点云密度不均和边界不清晰等问题的点云上表现出更强的泛化性能和更加鲁棒的分割效果。 展开更多
关键词 点云 语义分割 特征增强 几何特征 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部