Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(ST...Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(STON2)gene encodes a major adaptor for clathrin-mediated endocytosis(CME)of synaptic vesicles.In this study,we showed that the C-C(307Pro-851Ala)haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME.We found that schizophrenia-related STON2 variations led to protein dephosphorylation,which affected its interaction with synaptotagmin 1(Syt1),a calcium sensor protein located in the presynaptic membrane that is critical for CME.STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission,short-term plasticity,and schizophrenia-like behaviors.Moreover,among seven antipsychotic drugs,patients with the C-C(307Pro-851Ala)haplotype responded better to haloperidol than did the T-A(307Ser-851Ser)carriers.The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice.Our findings demonstrated the effect of schizophreniarelated STON2 variations on synaptic dysfunction through the regulation of CME,which might be attractive therapeutic targets for treating schizophrenia-like phenotypes.展开更多
基金supported by the Key Realm R&D Program of Guangdong Province(2019B030335001)the National Natural Science Foundation of China(82330042,81825009,82071541,81971283,82271576,and 82101570)+2 种基金Changping Laboratory(2021B-01-01)the China Postdoctoral Science Foundation(2021M690421)the Non-profit Central Research Institute Chinese Academy of Medical Sciences(2023-PT320-08).
文摘Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(STON2)gene encodes a major adaptor for clathrin-mediated endocytosis(CME)of synaptic vesicles.In this study,we showed that the C-C(307Pro-851Ala)haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME.We found that schizophrenia-related STON2 variations led to protein dephosphorylation,which affected its interaction with synaptotagmin 1(Syt1),a calcium sensor protein located in the presynaptic membrane that is critical for CME.STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission,short-term plasticity,and schizophrenia-like behaviors.Moreover,among seven antipsychotic drugs,patients with the C-C(307Pro-851Ala)haplotype responded better to haloperidol than did the T-A(307Ser-851Ser)carriers.The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice.Our findings demonstrated the effect of schizophreniarelated STON2 variations on synaptic dysfunction through the regulation of CME,which might be attractive therapeutic targets for treating schizophrenia-like phenotypes.