期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于大语言模型的电力知识库智能问答系统构建与评价
1
作者 张金营 王天堃 +5 位作者 么长英 谢华 柴林政 刘书恺 李彤亮 李舟军 《计算机科学》 2024年第12期286-292,共7页
大语言模型是近年来自然语言处理领域的一个重大突破,已成为该领域研究的一种新范式。在金融、法律等垂直领域,基于FinGPT,ChatLaw等垂直领域大模型的智能问答系统,促进了大模型技术在相关领域的学术研究与应用落地。然而,由于电力领域... 大语言模型是近年来自然语言处理领域的一个重大突破,已成为该领域研究的一种新范式。在金融、法律等垂直领域,基于FinGPT,ChatLaw等垂直领域大模型的智能问答系统,促进了大模型技术在相关领域的学术研究与应用落地。然而,由于电力领域缺乏相关的高质量数据,相关的大模型问答系统的构建工作遇到了较大阻碍。为了构建电力领域的智能问答系统,提出了基于大语言模型的电力知识库智能问答系统ChatPower。为了确保问答效果,ChatPower充分利用了电力管理各环节的数据。通过语义化理解,梳理和整合了大量的电力专业知识,精心设计和构建了一个较大规模的电力系统知识库。该知识库覆盖电力相关规章制度、安全生产管理体系以及发电设备故障知识等方面的内容。此外,通过参考检索到的电力知识,ChatPower显著缓解了问答中存在的模型幻觉问题,并在检索系统中引入了BM25检索、向量库检索与重排相结合的方法,有效降低了单纯依赖向量库检索的不准确性。同时,ChatPower结合基于大模型的提示工程技术,提升了对于规章制度类型问题生成回复的条理性。为了对问答系统进行评价,构建了一个电力知识问答的测试数据集,并对其进行了测试验证,测试结果表明:基于大语言模型的电力知识库问答系统ChatPower能够有效提升电力相关知识的检索和问答的准确性。 展开更多
关键词 大语言模型 知识库问答系统 信息检索 自然语言生成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部