期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
人工智能增强多模态电子皮肤用于心理压力评估
1
作者 栗乾明 邹旷怡 张晔 《Science Bulletin》 SCIE EI CAS CSCD 2024年第9期1173-1175,共3页
Mental health has gradually become a focus of attention, especially with the significant increase in stress-related psychological disorders such as anxiety and depression [1,2]. This has led to an increasing demand fo... Mental health has gradually become a focus of attention, especially with the significant increase in stress-related psychological disorders such as anxiety and depression [1,2]. This has led to an increasing demand for effective methods to assess mental health.However, current methods for assessing psychological stress are mostly limited to subjective surveys and clinical questionnaires。 展开更多
关键词 人工智能 多模态 电子皮肤
原文传递
高吸附电化学纤维传感器用于实时、准确检测颅内一氧化氮
2
作者 高睿 王列 +12 位作者 李丹 宋杰 栗乾明 卢江 李录河 李亦冉 叶婷婷 王嘉诚 焦一丁 李方琰 何儿 任俊烨 张晔 《Science China Materials》 SCIE EI CAS CSCD 2024年第4期1320-1331,共12页
电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸... 电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸附能力、具有高灵敏度和准确性的电化学一氧化氮传感器.其对一氧化氮的物理和化学吸附能力分别来自于电极的高比表面积和丰富的羧基官能团.此外,柔软的电极可以与脑组织的力学性能相匹配,实现了一个高度适应的电极/组织界面.由此设计的颅内一氧化氮传感器表现出迄今为止所报道文献中最高的灵敏度,为3245 pA nmol^(-1)L,检测限为0.1 nmol L^(-1).电极在植入后未观察到显著的炎症反应以及过量的一氧化氮表达,提高了检测的准确性.该传感器成功捕捉了大脑中的一氧化氮波动,并实现了对多个脑区的同时检测,促进了对大脑中一氧化氮生理病理作用的研究. 展开更多
关键词 一氧化氮浓度 生理病理 传感电极 化学纤维 组织界面 电化学
原文传递
Flexible conductive Ag nanowire/cellulose nano?bril hybrid nanopaper for strain and temperature sensing applications 被引量:12
3
作者 Rui Yin Shuaiyuan Yang +5 位作者 Qianming Li Shuaidi Zhang Hu Liu Jian Han Chuntai Liu Changyu Shen 《Science Bulletin》 SCIE EI CAS CSCD 2020年第11期899-908,M0003,共11页
With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid... With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of Ag NW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors. 展开更多
关键词 Ag nanowire Cellulose nanofibril NANOPAPER STRAIN Temperature sensor
原文传递
Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor 被引量:5
4
作者 Hongling Sun Yibing Bu +6 位作者 Hu Liu Jingwen Wang Wenke Yang Qianming Li Zhanhu Guo Chuntai Liu Changyu Shen 《Science Bulletin》 SCIE EI CAS CSCD 2022年第16期1669-1678,M0004,共11页
Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working r... Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working range,high sensitivity,and environment stability,especially in moisture or corrosive environments,remain a huge challenge.Herein,synergistic carbon nanotubes(CNTs)/reduced graphene oxide(rGO)dual conductive layer decorated elastic rubber band(RB)was successfully developed and treated with hydrophobic fumed silica(Hf-SiO_(2))for preparing superhydrophobic strain sensor.As expected,stable entangled CNTs layer and ultrasensitive microcracked rGO layer endow the sensor with extremely low detection limit(0.1%),high sensitivity(gauge factor is 685.3 at 482%strain),wide workable strain range(0–482%),fast response/recovery(200 ms/200 ms)and favorable reliability and reproducibility over 1000 cycles.Besides,the constructed Hf-SiO_(2) coating also makes the sensor exhibit excellent superhydrophobicity,self-cleaning property,and corrosion-resistance.As a proof of concept,our prepared high-performance strain sensor can realize the full-range monitoring of human motions and physiological signals even in the water environment,including pulse,vocalization,joint bending,running,and gesture recognition.Interestingly,it can also be knitted into a tactile electronic textile for spatial pressure distribution measurement.Thus,this study provides a universal technique for the preparation of high-performance strain sensors with great potential applications in the field of next-generation intelligent wearable electronics. 展开更多
关键词 Rubber band SUPERHYDROPHOBIC Strain sensor Synergistic dual conductive layer Wearable electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部