Mental health has gradually become a focus of attention, especially with the significant increase in stress-related psychological disorders such as anxiety and depression [1,2]. This has led to an increasing demand fo...Mental health has gradually become a focus of attention, especially with the significant increase in stress-related psychological disorders such as anxiety and depression [1,2]. This has led to an increasing demand for effective methods to assess mental health.However, current methods for assessing psychological stress are mostly limited to subjective surveys and clinical questionnaires。展开更多
电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸...电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸附能力、具有高灵敏度和准确性的电化学一氧化氮传感器.其对一氧化氮的物理和化学吸附能力分别来自于电极的高比表面积和丰富的羧基官能团.此外,柔软的电极可以与脑组织的力学性能相匹配,实现了一个高度适应的电极/组织界面.由此设计的颅内一氧化氮传感器表现出迄今为止所报道文献中最高的灵敏度,为3245 pA nmol^(-1)L,检测限为0.1 nmol L^(-1).电极在植入后未观察到显著的炎症反应以及过量的一氧化氮表达,提高了检测的准确性.该传感器成功捕捉了大脑中的一氧化氮波动,并实现了对多个脑区的同时检测,促进了对大脑中一氧化氮生理病理作用的研究.展开更多
With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid...With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of Ag NW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors.展开更多
Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working r...Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working range,high sensitivity,and environment stability,especially in moisture or corrosive environments,remain a huge challenge.Herein,synergistic carbon nanotubes(CNTs)/reduced graphene oxide(rGO)dual conductive layer decorated elastic rubber band(RB)was successfully developed and treated with hydrophobic fumed silica(Hf-SiO_(2))for preparing superhydrophobic strain sensor.As expected,stable entangled CNTs layer and ultrasensitive microcracked rGO layer endow the sensor with extremely low detection limit(0.1%),high sensitivity(gauge factor is 685.3 at 482%strain),wide workable strain range(0–482%),fast response/recovery(200 ms/200 ms)and favorable reliability and reproducibility over 1000 cycles.Besides,the constructed Hf-SiO_(2) coating also makes the sensor exhibit excellent superhydrophobicity,self-cleaning property,and corrosion-resistance.As a proof of concept,our prepared high-performance strain sensor can realize the full-range monitoring of human motions and physiological signals even in the water environment,including pulse,vocalization,joint bending,running,and gesture recognition.Interestingly,it can also be knitted into a tactile electronic textile for spatial pressure distribution measurement.Thus,this study provides a universal technique for the preparation of high-performance strain sensors with great potential applications in the field of next-generation intelligent wearable electronics.展开更多
基金supported by the National Natural Science Foundation of China (22175086 and 22005137)the Natural Science Foundation of Jiangsu Province (BK20200321)the Program for Innovative Talents and Entrepreneurs in Jiangsu Province(JSSCTD202138)。
文摘Mental health has gradually become a focus of attention, especially with the significant increase in stress-related psychological disorders such as anxiety and depression [1,2]. This has led to an increasing demand for effective methods to assess mental health.However, current methods for assessing psychological stress are mostly limited to subjective surveys and clinical questionnaires。
基金financially supported by the National Natural Science Foundation of China (22175086, 22005137, 22205098, and 82201992)the Natural Science Foundation of Jiangsu Province (BK20200321 and BK20210681)+5 种基金the Postdoctoral Research Foundation of Jiangsu Province (2021K007A)China Postdoctoral Science Foundation (2021M700067)the National Postdoctoral Program for Innovative Talents (BX20200161)the Program for Innovative Talents and Entrepreneurs in Jiangsu (JSSCTD202138)the Fundamental Research Funds for the Central Universities (021314380234)the Natural Science Foundation of Nanjing University of Chinese Medicine (XPT82201992)。
文摘电化学一氧化氮传感器能够实时监测颅内一氧化氮浓度,对于了解大脑中一氧化氮的功能至关重要.然而,在大脑中使用的传统刚性传感电极面临着灵敏度低和植入后神经炎症引起一氧化氮浓度异常的问题.在这里,我们报道了一种结合物理和化学吸附能力、具有高灵敏度和准确性的电化学一氧化氮传感器.其对一氧化氮的物理和化学吸附能力分别来自于电极的高比表面积和丰富的羧基官能团.此外,柔软的电极可以与脑组织的力学性能相匹配,实现了一个高度适应的电极/组织界面.由此设计的颅内一氧化氮传感器表现出迄今为止所报道文献中最高的灵敏度,为3245 pA nmol^(-1)L,检测限为0.1 nmol L^(-1).电极在植入后未观察到显著的炎症反应以及过量的一氧化氮表达,提高了检测的准确性.该传感器成功捕捉了大脑中的一氧化氮波动,并实现了对多个脑区的同时检测,促进了对大脑中一氧化氮生理病理作用的研究.
基金supported by the National Natural Science Foundation of China(51803191)the China Postdoctoral Science Foundation(2018M642782)the 111 project(D18023)
文摘With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, ‘‘green" electrically conductive Ag nanowire (Ag NW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of Ag NW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors.
基金supported by the National Natural Science Foundation of China(12072325)the National Key R&D Program of China(2019YFA0706802)the 111 Project(D18023)。
文摘Wearable electronic devices have received increasing interests because of their excellent flexibility,stretchability,and human friendliness.As the core components,flexible strain sensors integrated with wide working range,high sensitivity,and environment stability,especially in moisture or corrosive environments,remain a huge challenge.Herein,synergistic carbon nanotubes(CNTs)/reduced graphene oxide(rGO)dual conductive layer decorated elastic rubber band(RB)was successfully developed and treated with hydrophobic fumed silica(Hf-SiO_(2))for preparing superhydrophobic strain sensor.As expected,stable entangled CNTs layer and ultrasensitive microcracked rGO layer endow the sensor with extremely low detection limit(0.1%),high sensitivity(gauge factor is 685.3 at 482%strain),wide workable strain range(0–482%),fast response/recovery(200 ms/200 ms)and favorable reliability and reproducibility over 1000 cycles.Besides,the constructed Hf-SiO_(2) coating also makes the sensor exhibit excellent superhydrophobicity,self-cleaning property,and corrosion-resistance.As a proof of concept,our prepared high-performance strain sensor can realize the full-range monitoring of human motions and physiological signals even in the water environment,including pulse,vocalization,joint bending,running,and gesture recognition.Interestingly,it can also be knitted into a tactile electronic textile for spatial pressure distribution measurement.Thus,this study provides a universal technique for the preparation of high-performance strain sensors with great potential applications in the field of next-generation intelligent wearable electronics.