Electrocatalytic CO_(2) reduction plays an important role in the reduction of the CO_(2) concentration in atmosphere and consequently the mitigation of greenhouse effects.Pd has been extensively inves‐tigated as an e...Electrocatalytic CO_(2) reduction plays an important role in the reduction of the CO_(2) concentration in atmosphere and consequently the mitigation of greenhouse effects.Pd has been extensively inves‐tigated as an electrocatalyst for the CO_(2) reduction to formate,which is an important raw material in the production of organic chemicals.However,the low selectivity and competitive reaction(hydro‐gen evolution reaction(HER))have hindered the performance of monometallic Pd catalysts.In this paper,intermetallic PdBi nanosheets(NSs)are prepared for efficient CO_(2) reduction to formate.The highest Faradaic efficiency(FE)of formate on fully ordered PdBi NSs reaches 91.9%at−1.0 V vs.RHE,which outperforms that of the disordered PdBi and pure Pd catalysts.Density functional theo‐ry calculations suggest that compared to disordered PdBi NSs,the ordered structure can decrease the free energy barrier of*OCHO(a key intermediate of formate formation)and inhibit H_(2) evolution as well,thereby enhancing the activity and selectivity for formate production.展开更多
文摘Electrocatalytic CO_(2) reduction plays an important role in the reduction of the CO_(2) concentration in atmosphere and consequently the mitigation of greenhouse effects.Pd has been extensively inves‐tigated as an electrocatalyst for the CO_(2) reduction to formate,which is an important raw material in the production of organic chemicals.However,the low selectivity and competitive reaction(hydro‐gen evolution reaction(HER))have hindered the performance of monometallic Pd catalysts.In this paper,intermetallic PdBi nanosheets(NSs)are prepared for efficient CO_(2) reduction to formate.The highest Faradaic efficiency(FE)of formate on fully ordered PdBi NSs reaches 91.9%at−1.0 V vs.RHE,which outperforms that of the disordered PdBi and pure Pd catalysts.Density functional theo‐ry calculations suggest that compared to disordered PdBi NSs,the ordered structure can decrease the free energy barrier of*OCHO(a key intermediate of formate formation)and inhibit H_(2) evolution as well,thereby enhancing the activity and selectivity for formate production.