期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于SWI序列的支持向量机模型鉴别高级别胶质瘤与脑内单发转移瘤
1
作者
梁核心
袁振国
《临床医学进展》
2023年第1期1146-1153,共8页
目的:探讨基于磁敏感加权成像(SWI)序列的支持向量机模型鉴别高级别胶质瘤与脑单发转移瘤的临床价值。方法:回顾性分析经病理确诊的103例高级别胶质瘤及脑单发转移瘤患者的SWI序列图像,在获得的图像上手动勾画感兴趣体积(Region of inte...
目的:探讨基于磁敏感加权成像(SWI)序列的支持向量机模型鉴别高级别胶质瘤与脑单发转移瘤的临床价值。方法:回顾性分析经病理确诊的103例高级别胶质瘤及脑单发转移瘤患者的SWI序列图像,在获得的图像上手动勾画感兴趣体积(Region of interest, ROI)并提取影像组学特征,所有病例按照70%:30%分为训练组和验证组,训练组用于筛选特征和建立机器学习模型,特征筛选由独立样本t检验,Mann-Whitney U检验和最小绝对收缩与选择算子(least absolute shrinkage and selection operator, LASSO)完成,特征筛选后的数据建立支持向量机(support vector machine, SVM)模型。应用受试者操作员特征(ROC)曲线评价模型的诊断性能,结果表示为曲线下面积(AUC),准确度、灵敏度、特异度,阳性预测率和阴性预测率。验证组数据用于进一步验证。结果:基于SWI序列建立了鉴别高级别胶质瘤及脑内单发转移瘤的诊断模型。训练组中,模型曲线下面积为0.951,诊断的特异度、灵敏度,准确度,阳性预测率及阴性预测率分别为0.889,0.800,0.857,0.889,0.800。验证组中模型曲线下面积为0.868。特异度、灵敏度,准确度,阳性预测率及阴性预测率分别为0.875,0.889,0.880,0.933,0.800。结论:基于SWI序列的支持向量机模型能有效提高术前鉴别高级别胶质瘤及脑内单发转移瘤的诊断效能。
展开更多
关键词
磁共振成像
高级别胶质瘤
脑单发转移瘤
磁敏感加权成像
影像组学
下载PDF
职称材料
题名
基于SWI序列的支持向量机模型鉴别高级别胶质瘤与脑内单发转移瘤
1
作者
梁核心
袁振国
机构
山东大学
山东省立医院
出处
《临床医学进展》
2023年第1期1146-1153,共8页
文摘
目的:探讨基于磁敏感加权成像(SWI)序列的支持向量机模型鉴别高级别胶质瘤与脑单发转移瘤的临床价值。方法:回顾性分析经病理确诊的103例高级别胶质瘤及脑单发转移瘤患者的SWI序列图像,在获得的图像上手动勾画感兴趣体积(Region of interest, ROI)并提取影像组学特征,所有病例按照70%:30%分为训练组和验证组,训练组用于筛选特征和建立机器学习模型,特征筛选由独立样本t检验,Mann-Whitney U检验和最小绝对收缩与选择算子(least absolute shrinkage and selection operator, LASSO)完成,特征筛选后的数据建立支持向量机(support vector machine, SVM)模型。应用受试者操作员特征(ROC)曲线评价模型的诊断性能,结果表示为曲线下面积(AUC),准确度、灵敏度、特异度,阳性预测率和阴性预测率。验证组数据用于进一步验证。结果:基于SWI序列建立了鉴别高级别胶质瘤及脑内单发转移瘤的诊断模型。训练组中,模型曲线下面积为0.951,诊断的特异度、灵敏度,准确度,阳性预测率及阴性预测率分别为0.889,0.800,0.857,0.889,0.800。验证组中模型曲线下面积为0.868。特异度、灵敏度,准确度,阳性预测率及阴性预测率分别为0.875,0.889,0.880,0.933,0.800。结论:基于SWI序列的支持向量机模型能有效提高术前鉴别高级别胶质瘤及脑内单发转移瘤的诊断效能。
关键词
磁共振成像
高级别胶质瘤
脑单发转移瘤
磁敏感加权成像
影像组学
分类号
R73 [医药卫生—肿瘤]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于SWI序列的支持向量机模型鉴别高级别胶质瘤与脑内单发转移瘤
梁核心
袁振国
《临床医学进展》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部