期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于3D视觉的汽车轮胎胎面花纹缺陷检测系统
1
作者
梁步超
《传感器技术与应用》
2024年第3期331-340,共10页
目前,国内对于首胎胎纹的识别验证,普遍还是采用人工的方式,这种方式存在耗时长,精度低,容易遗漏等缺点。为了解决人工识别出现的种种问题,本文设计了基于3D视觉技术汽车轮胎胎面花纹缺陷检测系统,该系统收集到的是轮胎胎面花纹的点云数...
目前,国内对于首胎胎纹的识别验证,普遍还是采用人工的方式,这种方式存在耗时长,精度低,容易遗漏等缺点。为了解决人工识别出现的种种问题,本文设计了基于3D视觉技术汽车轮胎胎面花纹缺陷检测系统,该系统收集到的是轮胎胎面花纹的点云数据,经过处理可得到轮胎胎面花纹的二维深度图,再由训练好的语义分割模型进行检测识别。实验结果表明,该系统能够快速地准确地检测出轮胎胎面花纹存在的鼓泡、划痕和花纹错位等缺陷,具有实效性、高精度性的优点。
展开更多
关键词
胎面花纹
3D视觉技术
语义分割
下载PDF
职称材料
基于改进的DeepLabv3p网络的轮胎胎面花纹缺陷分割算法
被引量:
1
2
作者
梁步超
罗印升
宋伟
《信息技术与信息化》
2023年第8期95-98,共4页
为了解决DeepLabv3p网络在检测汽车轮胎胎面花纹图像上呈现的边缘分割模糊、模型参数量大、训练速度慢等问题,提出了一种融合双重十字交叉注意力模块(URCCA)的轻量级图像分割算法——DeepLabNLAS。首先,采用STDC2代替DeepLabv3p网络中...
为了解决DeepLabv3p网络在检测汽车轮胎胎面花纹图像上呈现的边缘分割模糊、模型参数量大、训练速度慢等问题,提出了一种融合双重十字交叉注意力模块(URCCA)的轻量级图像分割算法——DeepLabNLAS。首先,采用STDC2代替DeepLabv3p网络中的特征提取网络来降低模型的参数量和体积,提升模型的训练速度;然后,将URCCA模块与ASPP(atous spatial pyramid pooling)模块并联来获取长距离密集的上下文信息;之后,将两个模块的特征图相融合送入解码器进行上采样恢复至输入图像的分辨率大小。实验结果表明,本文改进算法在语义分割公用数据集城市景观数据集Cityscapes以及本文数据集Tread_pattern上的效果都优于DeepLabv3p网络。在公用数据集Cityscapes上,DeepLabNLAS比DeepLabv3p网络和文献[9]的平均交并比分别提高了1.22%和2.68%,在数据集Tread_pattern上分别提高了2.13%和3.41%。
展开更多
关键词
DeepLabv3p
汽车胎面花纹
STDC2
URCCA
下载PDF
职称材料
题名
基于3D视觉的汽车轮胎胎面花纹缺陷检测系统
1
作者
梁步超
机构
常州星宇车灯股份有限公司
出处
《传感器技术与应用》
2024年第3期331-340,共10页
文摘
目前,国内对于首胎胎纹的识别验证,普遍还是采用人工的方式,这种方式存在耗时长,精度低,容易遗漏等缺点。为了解决人工识别出现的种种问题,本文设计了基于3D视觉技术汽车轮胎胎面花纹缺陷检测系统,该系统收集到的是轮胎胎面花纹的点云数据,经过处理可得到轮胎胎面花纹的二维深度图,再由训练好的语义分割模型进行检测识别。实验结果表明,该系统能够快速地准确地检测出轮胎胎面花纹存在的鼓泡、划痕和花纹错位等缺陷,具有实效性、高精度性的优点。
关键词
胎面花纹
3D视觉技术
语义分割
分类号
U46 [机械工程—车辆工程]
下载PDF
职称材料
题名
基于改进的DeepLabv3p网络的轮胎胎面花纹缺陷分割算法
被引量:
1
2
作者
梁步超
罗印升
宋伟
机构
江苏理工学院
出处
《信息技术与信息化》
2023年第8期95-98,共4页
基金
基于3D视觉和AI技术的首胎检测系统研发(江苏省科技计划项目),项目编号:BY2022134。
文摘
为了解决DeepLabv3p网络在检测汽车轮胎胎面花纹图像上呈现的边缘分割模糊、模型参数量大、训练速度慢等问题,提出了一种融合双重十字交叉注意力模块(URCCA)的轻量级图像分割算法——DeepLabNLAS。首先,采用STDC2代替DeepLabv3p网络中的特征提取网络来降低模型的参数量和体积,提升模型的训练速度;然后,将URCCA模块与ASPP(atous spatial pyramid pooling)模块并联来获取长距离密集的上下文信息;之后,将两个模块的特征图相融合送入解码器进行上采样恢复至输入图像的分辨率大小。实验结果表明,本文改进算法在语义分割公用数据集城市景观数据集Cityscapes以及本文数据集Tread_pattern上的效果都优于DeepLabv3p网络。在公用数据集Cityscapes上,DeepLabNLAS比DeepLabv3p网络和文献[9]的平均交并比分别提高了1.22%和2.68%,在数据集Tread_pattern上分别提高了2.13%和3.41%。
关键词
DeepLabv3p
汽车胎面花纹
STDC2
URCCA
分类号
U463.341 [机械工程—车辆工程]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于3D视觉的汽车轮胎胎面花纹缺陷检测系统
梁步超
《传感器技术与应用》
2024
0
下载PDF
职称材料
2
基于改进的DeepLabv3p网络的轮胎胎面花纹缺陷分割算法
梁步超
罗印升
宋伟
《信息技术与信息化》
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部