期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SAT问题实例特性的端到端SAT求解模型
1
作者 龙峥嵘 李金龙 梁永濠 《计算机应用研究》 CSCD 北大核心 2024年第11期3376-3381,共6页
当前基于神经网络的端到端SAT求解模型在各类SAT问题求解上展现了巨大潜力。然而SAT问题难以容忍误差存在,神经网络模型无法保证不产生预测误差。为利用SAT问题实例特性来减少模型预测误差,提出了错误偏好变量嵌入架构(architecture of ... 当前基于神经网络的端到端SAT求解模型在各类SAT问题求解上展现了巨大潜力。然而SAT问题难以容忍误差存在,神经网络模型无法保证不产生预测误差。为利用SAT问题实例特性来减少模型预测误差,提出了错误偏好变量嵌入架构(architecture of embedding error-preference variables, AEEV)。该架构包含错误偏好变量嵌入调整算法和动态部分标签训练模式。首先,为利用参与越多未满足子句的变量越可能被错误分类这一特性,提出了错误偏好变量嵌入调整算法,在消息传递过程中根据变量参与的未满足子句个数来调整其嵌入。此外,提出了动态部分标签监督训练模式,该模式利用了SAT问题实例的变量赋值之间存在复杂依赖关系这一特性,避免为全部变量提供标签,仅为错误偏好变量提供一组来自真实解的标签,保持其他变量标签为预测值不变,以在训练过程管理一个更小的搜索空间。最后,在3-SAT、k-SAT、k-Coloring、3-Clique、SHA-1原像攻击以及收集的SAT竞赛数据集上进行了实验验证。结果表明,相较于目前较先进的基于神经网络的端到端求解模型QuerySAT,AEEV在包含600个变量的k-SAT数据集上准确率提升了45.81%。 展开更多
关键词 布尔可满足性问题 消息传递网络 机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部