In the present paper, the Vortex Identified Zwart-Gerber-Belamri(VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009...In the present paper, the Vortex Identified Zwart-Gerber-Belamri(VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation(V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex(TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex(TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51576143,11772239 and 91752105)the Science and Technology on Water Jet Propulsion Laboratory(Grant No.61422230101162223002)
文摘In the present paper, the Vortex Identified Zwart-Gerber-Belamri(VIZGB) cavitation model coupled with the SST-CC turbulence model is used to investigate the unsteady tip-leakage cavitating flow induced by a NACA0009 hydrofoil. A qualitative comparison between the numerical and experimental results is made. In order to quantitatively evaluate the reliability of the numerical data, the verification and validation(V&V) procedures are used in the present paper. Errors of numerical results are estimated with seven error estimators based on the Richardson extrapolation method. It is shown that though a strict validation cannot be achieved, a reasonable prediction of the gross characteristics of the tip-leakage cavitating flow can be obtained. Based on the numerical results, the influence of the cavitation on the tip-leakage vortex(TLV) is discussed, which indicates that the cavitation accelerates the fusion of the TLV and the tip-separation vortex(TSV). Moreover, the trajectory of the TLV, when the cavitation occurs, is close to the side wall.