ZrC/ZrB2 multilayered coatings with bilayer periods of 3.5-40nm are synthesized by rf magnetron sputtering. Analyses of x-ray diffraction, scanning electron microscopy and nanoindentation indicate that multilayered co...ZrC/ZrB2 multilayered coatings with bilayer periods of 3.5-40nm are synthesized by rf magnetron sputtering. Analyses of x-ray diffraction, scanning electron microscopy and nanoindentation indicate that multilayered coatings possess much higher hardness and greater fracture resistance than monolithic ZrC and ZrB2 coatings. A maximum hardness (41.TCPa) and a critical fracture load (73.7mN) are observed in the multilayer with A = 32 nm deposited at the substrate bias -40 V. Higher residual stress built in the ZrC layer can be released by periodic insertion of ZrB2 into the ZrC layer. A clear multilayered structure with mixed ZrB2(001), ZrB2 (002) and ZrC (111) orientations should be responsible for the enhanced mechanical properties.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 50472026, and the Applied Basic Key Project of Tianjin (043801011).
文摘ZrC/ZrB2 multilayered coatings with bilayer periods of 3.5-40nm are synthesized by rf magnetron sputtering. Analyses of x-ray diffraction, scanning electron microscopy and nanoindentation indicate that multilayered coatings possess much higher hardness and greater fracture resistance than monolithic ZrC and ZrB2 coatings. A maximum hardness (41.TCPa) and a critical fracture load (73.7mN) are observed in the multilayer with A = 32 nm deposited at the substrate bias -40 V. Higher residual stress built in the ZrC layer can be released by periodic insertion of ZrB2 into the ZrC layer. A clear multilayered structure with mixed ZrB2(001), ZrB2 (002) and ZrC (111) orientations should be responsible for the enhanced mechanical properties.