在LED中引入了Al0.1Ga0.9N-Al x Ga1-x N-Al0.1Ga0.9N多层电子阻挡层,并讨论结构中插入的势阱深度(即中间层Al x Ga1-x N的Al组分"x")的变化对LED性能带来的影响。研究发现,具有三明治结构电子阻挡层(EBL)的LED比传统LED具有...在LED中引入了Al0.1Ga0.9N-Al x Ga1-x N-Al0.1Ga0.9N多层电子阻挡层,并讨论结构中插入的势阱深度(即中间层Al x Ga1-x N的Al组分"x")的变化对LED性能带来的影响。研究发现,具有三明治结构电子阻挡层(EBL)的LED比传统LED具有更好的发光特性,并且其性能与电子阻挡层中的势阱深度密切相关。究其原因,一是由于电子阻挡层内部不同程度的晶格失配而引入的极化电场引起了电子阻挡层的有效势垒高度的不同;二是在于电子阻挡层中的势阱所产生的空穴聚集效应也会随着势阱深度的变化而变化。故而使得空穴注入效率和电子阻挡层对电子的限制作用在不同势阱深度的LED样品中有所不同。展开更多
Quantum well intermixing (QWI) by the impurity-free vacancy disordering (IFVD) technique is an important and effective approach for the monolithic integration of optoelectronic devices based on InGaAs/InP quantum ...Quantum well intermixing (QWI) by the impurity-free vacancy disordering (IFVD) technique is an important and effective approach for the monolithic integration of optoelectronic devices based on InGaAs/InP quantum well structures. We experimentally investigate the influence of the capping layer SiO2 and Si3N4 on the QWI by IFVD. The results show that for all the samples with three-types differently doped (P, N and I) top InP layers, Si3N4 can always induce a larger photoluminescence blueshift than SiO2 in the IFVD QWI process, which attributes more to the group III and V vacancies point defects created in the interface of Si3N4-InP than that of SiO2-InP, proved by the SIMS measurements. The inherent mechanisms for explaining these properties are further discussed.展开更多
The microRaman scattering of 4H-SiC films, fabricated by low pressure chemical vapor deposition under different growth conditions, is investigated at temperatures ranging from 80 K to 550K. The effects of growth condi...The microRaman scattering of 4H-SiC films, fabricated by low pressure chemical vapor deposition under different growth conditions, is investigated at temperatures ranging from 80 K to 550K. The effects of growth conditions on E2 (TO), E1 (TO) and A1 (LO) phonon mode frequencies are negligible. The temperature dependences of phonon linewidth and lifetime of E2 (TO) modes are analyzed in terms of an anharmonic damping effect induced by thermal and growth conditions. The results show that the lifetime of E2 (TO) mode increases when the quality of the sample improves. Unlike other phone modes, Raman shift of A1 (longitudinal optical plasma coupling (LOPC)) mode does not decrease monotonously when the temperature increases, but tends to blueshift at low temperatures and to redshift at relatively high temperatures. Theoretical analyses are given for the abnormal phenomena of A1 (LOPC) mode in 4H-SiC.展开更多
文摘在LED中引入了Al0.1Ga0.9N-Al x Ga1-x N-Al0.1Ga0.9N多层电子阻挡层,并讨论结构中插入的势阱深度(即中间层Al x Ga1-x N的Al组分"x")的变化对LED性能带来的影响。研究发现,具有三明治结构电子阻挡层(EBL)的LED比传统LED具有更好的发光特性,并且其性能与电子阻挡层中的势阱深度密切相关。究其原因,一是由于电子阻挡层内部不同程度的晶格失配而引入的极化电场引起了电子阻挡层的有效势垒高度的不同;二是在于电子阻挡层中的势阱所产生的空穴聚集效应也会随着势阱深度的变化而变化。故而使得空穴注入效率和电子阻挡层对电子的限制作用在不同势阱深度的LED样品中有所不同。
文摘Quantum well intermixing (QWI) by the impurity-free vacancy disordering (IFVD) technique is an important and effective approach for the monolithic integration of optoelectronic devices based on InGaAs/InP quantum well structures. We experimentally investigate the influence of the capping layer SiO2 and Si3N4 on the QWI by IFVD. The results show that for all the samples with three-types differently doped (P, N and I) top InP layers, Si3N4 can always induce a larger photoluminescence blueshift than SiO2 in the IFVD QWI process, which attributes more to the group III and V vacancies point defects created in the interface of Si3N4-InP than that of SiO2-InP, proved by the SIMS measurements. The inherent mechanisms for explaining these properties are further discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61176085,11474365 and 61377055the Department of Education of Guangdong Province under Grant No gjhz1103the Open-Project Program of the State Key laboratory of Opto-Electronic Material and Technologies of Sun Yatsen University
文摘The microRaman scattering of 4H-SiC films, fabricated by low pressure chemical vapor deposition under different growth conditions, is investigated at temperatures ranging from 80 K to 550K. The effects of growth conditions on E2 (TO), E1 (TO) and A1 (LO) phonon mode frequencies are negligible. The temperature dependences of phonon linewidth and lifetime of E2 (TO) modes are analyzed in terms of an anharmonic damping effect induced by thermal and growth conditions. The results show that the lifetime of E2 (TO) mode increases when the quality of the sample improves. Unlike other phone modes, Raman shift of A1 (longitudinal optical plasma coupling (LOPC)) mode does not decrease monotonously when the temperature increases, but tends to blueshift at low temperatures and to redshift at relatively high temperatures. Theoretical analyses are given for the abnormal phenomena of A1 (LOPC) mode in 4H-SiC.