期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
融合Tucker分解和深度学习的出租车需求预测——一种城市出租车需求预测的轻量化解决方案
1
作者 楚本嘉 颜鸿宇 李建波 《软件工程与应用》 2024年第5期660-669,共10页
城市出租车需求预测在降低出租车空车行驶率、缓解道路交通拥堵方面发挥着重要作用。然而,由于城市路网结构的复杂性,出租车流量的准确预测一直是一项挑战。为了更好地捕捉出租车数据的空间特征,准确预测未来的需求变化,我们提出了一种... 城市出租车需求预测在降低出租车空车行驶率、缓解道路交通拥堵方面发挥着重要作用。然而,由于城市路网结构的复杂性,出租车流量的准确预测一直是一项挑战。为了更好地捕捉出租车数据的空间特征,准确预测未来的需求变化,我们提出了一种新颖的时空预测模型。该模型融合了Tucker分解和深度学习的优势,不仅能够捕获出租车需求数据之间的时空相关性,还考虑到了外部因素的潜在影响。最终,通过对五个真实世界的数据集进行出租车需求预测实验,我们验证了本文提出的模型在预测性能方面的有效性。Urban taxi demand forecasting plays an important role in reducing empty cab trips and easing road traffic congestion. However, accurate prediction of cab flows has been a challenge due to the complexity of urban road network structures. To better capture the spatial characteristics of cab data and accurately predict future demand changes, we propose a novel spatial-temporal prediction model. The model incorporates the strengths of Tucker decomposition and deep learning to not only capture the spatial-temporal correlation between cab demand data, but also take into account the potential impact of external factors. Ultimately, by conducting cab demand prediction experiments on five real-world datasets, we validate the effectiveness of the model proposed in this paper in terms of prediction performance. 展开更多
关键词 出租车需求预测 时空预测模型 Tucker分解
下载PDF
基于时空的深度学习模型感知通行时间
2
作者 刘阳 李建波 +2 位作者 楚本嘉 马照斌 夏丰千 《计算机科学与应用》 2023年第3期378-389,共12页
随着国民经济的快速增长,人们的生活水平日益提高,私家车的数量不断增加,导致城市出现一系列交通拥堵问题和事故。因此,对于城市交通监控、导航、路线规划和乘车共享来说,感知给定城市路径的通行时间至关重要。以前的方法总是感知单个... 随着国民经济的快速增长,人们的生活水平日益提高,私家车的数量不断增加,导致城市出现一系列交通拥堵问题和事故。因此,对于城市交通监控、导航、路线规划和乘车共享来说,感知给定城市路径的通行时间至关重要。以前的方法总是感知单个路径的通行时间,然后将它们相加为整个路径的通行时间。我们提出了一个基于时空的深度学习框架来感知整个路径的通行时间。更具体地说,我们使用卷积神经网络来捕获时间和空间依赖性。由于还有一些影响因素(如天气、时间、驾驶员等)影响通行时间,我们添加了一个影响因素模块来预处理数据。大量的实验证明,我们提出的模型显著优于其他已知模型。 展开更多
关键词 通行时间感知 深度学习 时间–空间
下载PDF
一种城市出行需求预测的时空方法
3
作者 楚本嘉 李建波 +2 位作者 刘阳 马照斌 夏丰千 《计算机科学与应用》 2023年第3期518-527,共10页
预测城市出行需求对于交通管理、保障公共出行安全和建设智慧城市具有重要意义。然而,由于受区域间交通状况、天气、节假日等诸多复杂因素的影响,城市出行需求数据往往存在高频噪声和复杂的波动模式。本文提出了一种基于深度学习的城市... 预测城市出行需求对于交通管理、保障公共出行安全和建设智慧城市具有重要意义。然而,由于受区域间交通状况、天气、节假日等诸多复杂因素的影响,城市出行需求数据往往存在高频噪声和复杂的波动模式。本文提出了一种基于深度学习的城市出行需求预测模型(Spatio-Temporal Urban Travel Demand Forecasting Model, STUTDFM)。该模型的架构由外部因素影响组件、时空特征提取组件和数据融合组件组成。外部因素影响组件可以处理城市出行需求影响因素的数据,从而拟合一些局部极值,时空特征提取组件可以捕获城市出行需求数据的空间依赖性和时间依赖性,数据融合组件可以将外部因素影响组件和时空特征提取组件调整到整体预测模型中。对四个真实数据集的实验表明,所提出的城市出行需求预测模型方法优于八种众所周知的方法。 展开更多
关键词 深度学习 城市出行需求 预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部