针对传统最小均方误差(Least Mean Square,LMS)自适应滤波算法由于步长固定,在解决稳态误差与收敛性之间的关系时,始终处于矛盾状态的问题,在对传统的固定步长LMS自适应滤波算法分析的基础上,根据变步长LMS自适应滤波算法的步长调整原则...针对传统最小均方误差(Least Mean Square,LMS)自适应滤波算法由于步长固定,在解决稳态误差与收敛性之间的关系时,始终处于矛盾状态的问题,在对传统的固定步长LMS自适应滤波算法分析的基础上,根据变步长LMS自适应滤波算法的步长调整原则,通过构造步长因子与误差信号的非线性函数,提出了一种基于正态分布曲线的分段式变步长LMS自适应滤波算法,并分析了参数取值对算法性能的影响。针对实际信号处理过程中参考信号难以选取的问题,提出了一种基于分裂阵的参考信号选取方法。理论和海试数据分析结果表明:该算法的收敛速度和稳态误差明显优于固定步长的LMS自适应滤波算法和基于Sigmoid函数的变步长LMS自适应滤波算法。展开更多
文摘针对传统最小均方误差(Least Mean Square,LMS)自适应滤波算法由于步长固定,在解决稳态误差与收敛性之间的关系时,始终处于矛盾状态的问题,在对传统的固定步长LMS自适应滤波算法分析的基础上,根据变步长LMS自适应滤波算法的步长调整原则,通过构造步长因子与误差信号的非线性函数,提出了一种基于正态分布曲线的分段式变步长LMS自适应滤波算法,并分析了参数取值对算法性能的影响。针对实际信号处理过程中参考信号难以选取的问题,提出了一种基于分裂阵的参考信号选取方法。理论和海试数据分析结果表明:该算法的收敛速度和稳态误差明显优于固定步长的LMS自适应滤波算法和基于Sigmoid函数的变步长LMS自适应滤波算法。