稻城圆环阵太阳射电望远镜(Daocheng Solar Radio Telescope, DSRT)作为子午工程二期太阳-行星际探测子系统的重要部分,工作在150–450 MHz频段,可提供高空间、高时间分辨率的太阳爆发亮温图像.针对DSRT天线的高精度指向测量以及对指向...稻城圆环阵太阳射电望远镜(Daocheng Solar Radio Telescope, DSRT)作为子午工程二期太阳-行星际探测子系统的重要部分,工作在150–450 MHz频段,可提供高空间、高时间分辨率的太阳爆发亮温图像.针对DSRT天线的高精度指向测量以及对指向误差批量标定和校正的需求,首先根据DSRT独有的三轴座架系统,通过四元数旋转变换法建立了天线3参数编码器零点误差模型;然后提出了基于射电源的漂移扫描法获得16个单元天线功率方向图,并根据2维方向图确定波束中心的方法精确测量了DSRT天线指向误差;最后用最小二乘法拟合得到模型参数,并通过天线控制软件重新调整各个轴的零点,后对调整结果进行验证.结果表明指向校正方法可靠有效,校正后16个天线的指向精度为0.5°之内,明显优于校正前3.5°的指向误差,满足误差小于DSRT天线最高工作频率下的1/10波束范围内的要求.展开更多
文摘稻城圆环阵太阳射电望远镜(Daocheng Solar Radio Telescope, DSRT)作为子午工程二期太阳-行星际探测子系统的重要部分,工作在150–450 MHz频段,可提供高空间、高时间分辨率的太阳爆发亮温图像.针对DSRT天线的高精度指向测量以及对指向误差批量标定和校正的需求,首先根据DSRT独有的三轴座架系统,通过四元数旋转变换法建立了天线3参数编码器零点误差模型;然后提出了基于射电源的漂移扫描法获得16个单元天线功率方向图,并根据2维方向图确定波束中心的方法精确测量了DSRT天线指向误差;最后用最小二乘法拟合得到模型参数,并通过天线控制软件重新调整各个轴的零点,后对调整结果进行验证.结果表明指向校正方法可靠有效,校正后16个天线的指向精度为0.5°之内,明显优于校正前3.5°的指向误差,满足误差小于DSRT天线最高工作频率下的1/10波束范围内的要求.