期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进PV-RCNN++算法的三维点云聚焦式特征研究
1
作者
段界余
宁媛
黎玉成
《智能计算机与应用》
2023年第12期19-22,共4页
为增强RoI网格局部特征的表征能力、加强细节特征的表达效果,以进一步提高点云语义分割精度,针对PV-RCNN++网络采用的RoI网格池化模块进行了研究。在PV-RCNN++网络中,RoI网格池化模块只是将网格点周围的体素特征进行简单的空间位置排序...
为增强RoI网格局部特征的表征能力、加强细节特征的表达效果,以进一步提高点云语义分割精度,针对PV-RCNN++网络采用的RoI网格池化模块进行了研究。在PV-RCNN++网络中,RoI网格池化模块只是将网格点周围的体素特征进行简单的空间位置排序,导致局部特征表达效果欠佳。为加强RoI网格池化模块对局部特征的表征能力,引入CBAM注意力机制,从通道和空间两个作用域出发,一方面处理特征集通道的分配关系,另一方面可使神经网络更加关注特征集中对分类起决定性作用的体素区域,以强化重要信息在网络的有效传递并提高点云语义分割结果的鲁棒性。对自动驾驶领域公开数据集Kitti的语义分割实验表明,所提出的改进PV-RCNN++的聚焦式特征的算法训练出的模型,较基准模型提升效果显著,有效增强了RoI网格池化模块对局部特征的表征能力,强化了细节特征的表达效果,提高了点云语义分割精度。
展开更多
关键词
激光雷达
深度学习
卷积神经网络
PV-RCNN++
CBAM注意力机制
下载PDF
职称材料
题名
基于改进PV-RCNN++算法的三维点云聚焦式特征研究
1
作者
段界余
宁媛
黎玉成
机构
贵州大学电气工程学院
出处
《智能计算机与应用》
2023年第12期19-22,共4页
基金
国家自然科学基金(61663005)。
文摘
为增强RoI网格局部特征的表征能力、加强细节特征的表达效果,以进一步提高点云语义分割精度,针对PV-RCNN++网络采用的RoI网格池化模块进行了研究。在PV-RCNN++网络中,RoI网格池化模块只是将网格点周围的体素特征进行简单的空间位置排序,导致局部特征表达效果欠佳。为加强RoI网格池化模块对局部特征的表征能力,引入CBAM注意力机制,从通道和空间两个作用域出发,一方面处理特征集通道的分配关系,另一方面可使神经网络更加关注特征集中对分类起决定性作用的体素区域,以强化重要信息在网络的有效传递并提高点云语义分割结果的鲁棒性。对自动驾驶领域公开数据集Kitti的语义分割实验表明,所提出的改进PV-RCNN++的聚焦式特征的算法训练出的模型,较基准模型提升效果显著,有效增强了RoI网格池化模块对局部特征的表征能力,强化了细节特征的表达效果,提高了点云语义分割精度。
关键词
激光雷达
深度学习
卷积神经网络
PV-RCNN++
CBAM注意力机制
Keywords
Lidar
deep learning
CNN
PV-RCNN++
CBAM-attention mechanism
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进PV-RCNN++算法的三维点云聚焦式特征研究
段界余
宁媛
黎玉成
《智能计算机与应用》
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部