期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv3的酒瓶盖瑕疵检测算法 被引量:7
1
作者 段禄成 谭保华 余星雨 《电子测量技术》 北大核心 2022年第15期130-137,共8页
在智能酿酒工艺中,对酒瓶外包装进行瑕疵检测是质检环节重要的一环。本文基于改进YOLOv3目标检测算法,将其应用到酒瓶盖瑕疵检测的环节中,最终结果符合工厂生产线对瑕疵检测精度和速度的要求。该方法在YOLOv3主干Backbone网络的残差模... 在智能酿酒工艺中,对酒瓶外包装进行瑕疵检测是质检环节重要的一环。本文基于改进YOLOv3目标检测算法,将其应用到酒瓶盖瑕疵检测的环节中,最终结果符合工厂生产线对瑕疵检测精度和速度的要求。该方法在YOLOv3主干Backbone网络的残差模块中引入SENet Module,应用注意力机制加强对特征的提取,在Neck特征金字塔网络中引入自适应特征融合网络(ASFF),融合不同尺度的特征信息,提高模型的预测能力,同时引入Focus Loss损失函数解决正负样本不均衡问题,加速损失函数的收敛速度。改进后的YOLOv3-ASFL在自制酒瓶盖瑕疵数据集上mAP达到92.33%,单张图像检测时间仅为0.085 s,比原始YOLOv3在相同数据集上的mAP提升了6.59%。改进后的YOLOv3模型性能更好,符合酒瓶包装生产线对瑕疵检测的需求。 展开更多
关键词 瑕疵检测 自适应特征融合 YOLOv3 SENet Focus Loss
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部