有限集模型预测控制(finite control set model predictive control,FCS-MPC)处理优化问题有较大优势,但其控制精度在低采样频率下会急剧下降。以三相电压源整流器为例,现有解决方法多采用扩充矢量或改用调制型预测控制(modulated model...有限集模型预测控制(finite control set model predictive control,FCS-MPC)处理优化问题有较大优势,但其控制精度在低采样频率下会急剧下降。以三相电压源整流器为例,现有解决方法多采用扩充矢量或改用调制型预测控制(modulated model predictive control,M-MPC),其本质在于通过增加开关频率提升控制精度,并未起到优化效果。为解决FCS-MPC在低采样频率下控制效果差的问题,同时为了能以较低的开关频率最大限度地提升控制精度,在分析FCS-MPC开关频率与控制误差间非线性关系的基础上,提出一种新的控制集扩充方法。通过构建12个新的电压矢量来扩充控制集,显著提升了FCS-MPC在低采样频率下的控制精度,且带来的开关频率增加较小。同时,在相同开关频率下,所提方法能够取得更优于M-MPC的控制效果。此外,通过调节目标矢量的权重还可改变其扩充模式,保留了FCS-MPC简单、直接的特点。最后,通过对比仿真及实验验证所提方法的有效性。展开更多
文摘有限集模型预测控制(finite control set model predictive control,FCS-MPC)处理优化问题有较大优势,但其控制精度在低采样频率下会急剧下降。以三相电压源整流器为例,现有解决方法多采用扩充矢量或改用调制型预测控制(modulated model predictive control,M-MPC),其本质在于通过增加开关频率提升控制精度,并未起到优化效果。为解决FCS-MPC在低采样频率下控制效果差的问题,同时为了能以较低的开关频率最大限度地提升控制精度,在分析FCS-MPC开关频率与控制误差间非线性关系的基础上,提出一种新的控制集扩充方法。通过构建12个新的电压矢量来扩充控制集,显著提升了FCS-MPC在低采样频率下的控制精度,且带来的开关频率增加较小。同时,在相同开关频率下,所提方法能够取得更优于M-MPC的控制效果。此外,通过调节目标矢量的权重还可改变其扩充模式,保留了FCS-MPC简单、直接的特点。最后,通过对比仿真及实验验证所提方法的有效性。