空间聚类一直是空间数据挖掘研究的热点之一。现有的聚类方法大都局限于根据空间位置来进行空间聚类的,忽略了空间对象的专题属性,从而导致空间聚类结果有时完全不符合人的空间认知,缺乏合理的解释。为此,综合考虑空间对象的位置和专题...空间聚类一直是空间数据挖掘研究的热点之一。现有的聚类方法大都局限于根据空间位置来进行空间聚类的,忽略了空间对象的专题属性,从而导致空间聚类结果有时完全不符合人的空间认知,缺乏合理的解释。为此,综合考虑空间对象的位置和专题属性,提出了一种基于概念格的空间聚类(Concept Lattices Based SpatialCluster,CLBSC)方法。该方法通过构建多维专题属性的概念格,简化了空间聚类计算。最后,通过两组实验对CLBSC算法进行了验证分析,研究结果表明:所提出的CLBSC算法是一种具有高可靠性和抗噪性的空间聚类算法。展开更多
文摘空间聚类一直是空间数据挖掘研究的热点之一。现有的聚类方法大都局限于根据空间位置来进行空间聚类的,忽略了空间对象的专题属性,从而导致空间聚类结果有时完全不符合人的空间认知,缺乏合理的解释。为此,综合考虑空间对象的位置和专题属性,提出了一种基于概念格的空间聚类(Concept Lattices Based SpatialCluster,CLBSC)方法。该方法通过构建多维专题属性的概念格,简化了空间聚类计算。最后,通过两组实验对CLBSC算法进行了验证分析,研究结果表明:所提出的CLBSC算法是一种具有高可靠性和抗噪性的空间聚类算法。