期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合字词模型的中文命名实体识别研究 被引量:41
1
作者 殷章志 李欣子 +1 位作者 黄德根 李玖一 《中文信息学报》 CSCD 北大核心 2019年第11期95-100,106,共7页
命名实体识别(NER)是自然语言处理中一项非常重要的基础任务。传统的机器学习方法在处理该任务时,主要依赖于人们的专业领域知识和人工提取的特征。为了在不需要人工特征的条件下获得较好的结果,该文提出了一种融合字词BiLSTM模型的命... 命名实体识别(NER)是自然语言处理中一项非常重要的基础任务。传统的机器学习方法在处理该任务时,主要依赖于人们的专业领域知识和人工提取的特征。为了在不需要人工特征的条件下获得较好的结果,该文提出了一种融合字词BiLSTM模型的命名实体识别方法。首先分别用BiLSTM-CRF训练得到基于字的模型Char-NER和基于词的模型Word-NER,然后将两个模型得到的分值向量进行运算和拼接,将拼接后的向量作为特征送入SVM进行训练,使用SVM对Char-NER和Word-NER进行模型融合。实验结果表明,该方法在不需要人工特征的条件下,在1998年《人民日报》语料和MSRA语料上对人名、地名、机构名识别的F值分别达到了94.04%、92.15%、87.05%和91.73%、93.20%、83.15%。 展开更多
关键词 命名实体识别 BiLSTM-CRF 模型融合 SVM
下载PDF
基于语义图优化算法的中文微博观点摘要研究 被引量:2
2
作者 张聪 裴家欢 +2 位作者 黄锴宇 黄德根 殷章志 《山东大学学报(理学版)》 CAS CSCD 北大核心 2017年第7期59-65,共7页
为从海量微博中高效地获取不同话题下的关键信息,微博观点摘要成为自然语言处理领域近期研究的热点之一。基线方法基于TF-IDF算法抽取微博句中的关键词,并据此计算微博的重要性分数,直接筛选出观点摘要;朴素改进方法在基线方法的基础上... 为从海量微博中高效地获取不同话题下的关键信息,微博观点摘要成为自然语言处理领域近期研究的热点之一。基线方法基于TF-IDF算法抽取微博句中的关键词,并据此计算微博的重要性分数,直接筛选出观点摘要;朴素改进方法在基线方法的基础上,增加了情感分类步骤,并利用微博句之间的语义距离,将摘要句候选集中语义重复、重要度较小的句子去除,生成观点摘要;基于语义图优化算法的方法在朴素改进方法的基础上,利用微博句的重要性分数及微博句之间的语义距离构建语义图结构,并通过图优化算法筛选出观点摘要。朴素改进方法在COAE2016评测任务一测试数据集上,10个话题的平均ROUGE-1值达到26.39%,平均ROUGE-2值达到0.68%,平均ROUGE-SU4值达到5.69%,且评测官方公布结果显示,该方法在9项评价指标中获得6项最佳性能。基于语义图优化算法的方法在评测样例数据集上进行了实验,结果显示,该方法比朴素改进方法在ROUGE-1,ROUGE-2,ROUGE-SU4值上分别提升了0.63%,1.51%,2.69%。 展开更多
关键词 微博摘要 语义图优化 TF—IDF 句子相似度
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部