期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合字词模型的中文命名实体识别研究
被引量:
41
1
作者
殷章志
李欣子
+1 位作者
黄德根
李玖一
《中文信息学报》
CSCD
北大核心
2019年第11期95-100,106,共7页
命名实体识别(NER)是自然语言处理中一项非常重要的基础任务。传统的机器学习方法在处理该任务时,主要依赖于人们的专业领域知识和人工提取的特征。为了在不需要人工特征的条件下获得较好的结果,该文提出了一种融合字词BiLSTM模型的命...
命名实体识别(NER)是自然语言处理中一项非常重要的基础任务。传统的机器学习方法在处理该任务时,主要依赖于人们的专业领域知识和人工提取的特征。为了在不需要人工特征的条件下获得较好的结果,该文提出了一种融合字词BiLSTM模型的命名实体识别方法。首先分别用BiLSTM-CRF训练得到基于字的模型Char-NER和基于词的模型Word-NER,然后将两个模型得到的分值向量进行运算和拼接,将拼接后的向量作为特征送入SVM进行训练,使用SVM对Char-NER和Word-NER进行模型融合。实验结果表明,该方法在不需要人工特征的条件下,在1998年《人民日报》语料和MSRA语料上对人名、地名、机构名识别的F值分别达到了94.04%、92.15%、87.05%和91.73%、93.20%、83.15%。
展开更多
关键词
命名实体识别
BiLSTM-CRF
模型融合
SVM
下载PDF
职称材料
基于语义图优化算法的中文微博观点摘要研究
被引量:
2
2
作者
张聪
裴家欢
+2 位作者
黄锴宇
黄德根
殷章志
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第7期59-65,共7页
为从海量微博中高效地获取不同话题下的关键信息,微博观点摘要成为自然语言处理领域近期研究的热点之一。基线方法基于TF-IDF算法抽取微博句中的关键词,并据此计算微博的重要性分数,直接筛选出观点摘要;朴素改进方法在基线方法的基础上...
为从海量微博中高效地获取不同话题下的关键信息,微博观点摘要成为自然语言处理领域近期研究的热点之一。基线方法基于TF-IDF算法抽取微博句中的关键词,并据此计算微博的重要性分数,直接筛选出观点摘要;朴素改进方法在基线方法的基础上,增加了情感分类步骤,并利用微博句之间的语义距离,将摘要句候选集中语义重复、重要度较小的句子去除,生成观点摘要;基于语义图优化算法的方法在朴素改进方法的基础上,利用微博句的重要性分数及微博句之间的语义距离构建语义图结构,并通过图优化算法筛选出观点摘要。朴素改进方法在COAE2016评测任务一测试数据集上,10个话题的平均ROUGE-1值达到26.39%,平均ROUGE-2值达到0.68%,平均ROUGE-SU4值达到5.69%,且评测官方公布结果显示,该方法在9项评价指标中获得6项最佳性能。基于语义图优化算法的方法在评测样例数据集上进行了实验,结果显示,该方法比朴素改进方法在ROUGE-1,ROUGE-2,ROUGE-SU4值上分别提升了0.63%,1.51%,2.69%。
展开更多
关键词
微博摘要
语义图优化
TF—IDF
句子相似度
原文传递
题名
融合字词模型的中文命名实体识别研究
被引量:
41
1
作者
殷章志
李欣子
黄德根
李玖一
机构
大连理工大学计算机科学与技术学院
出处
《中文信息学报》
CSCD
北大核心
2019年第11期95-100,106,共7页
基金
国家自然科学基金(61672127)
文摘
命名实体识别(NER)是自然语言处理中一项非常重要的基础任务。传统的机器学习方法在处理该任务时,主要依赖于人们的专业领域知识和人工提取的特征。为了在不需要人工特征的条件下获得较好的结果,该文提出了一种融合字词BiLSTM模型的命名实体识别方法。首先分别用BiLSTM-CRF训练得到基于字的模型Char-NER和基于词的模型Word-NER,然后将两个模型得到的分值向量进行运算和拼接,将拼接后的向量作为特征送入SVM进行训练,使用SVM对Char-NER和Word-NER进行模型融合。实验结果表明,该方法在不需要人工特征的条件下,在1998年《人民日报》语料和MSRA语料上对人名、地名、机构名识别的F值分别达到了94.04%、92.15%、87.05%和91.73%、93.20%、83.15%。
关键词
命名实体识别
BiLSTM-CRF
模型融合
SVM
Keywords
named entity recognition
BiLSTM-CRF
model ensemble
SVM
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于语义图优化算法的中文微博观点摘要研究
被引量:
2
2
作者
张聪
裴家欢
黄锴宇
黄德根
殷章志
机构
大连理工大学计算机科学与技术学院
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第7期59-65,共7页
基金
国家自然科学基金资助项目(61672127)
文摘
为从海量微博中高效地获取不同话题下的关键信息,微博观点摘要成为自然语言处理领域近期研究的热点之一。基线方法基于TF-IDF算法抽取微博句中的关键词,并据此计算微博的重要性分数,直接筛选出观点摘要;朴素改进方法在基线方法的基础上,增加了情感分类步骤,并利用微博句之间的语义距离,将摘要句候选集中语义重复、重要度较小的句子去除,生成观点摘要;基于语义图优化算法的方法在朴素改进方法的基础上,利用微博句的重要性分数及微博句之间的语义距离构建语义图结构,并通过图优化算法筛选出观点摘要。朴素改进方法在COAE2016评测任务一测试数据集上,10个话题的平均ROUGE-1值达到26.39%,平均ROUGE-2值达到0.68%,平均ROUGE-SU4值达到5.69%,且评测官方公布结果显示,该方法在9项评价指标中获得6项最佳性能。基于语义图优化算法的方法在评测样例数据集上进行了实验,结果显示,该方法比朴素改进方法在ROUGE-1,ROUGE-2,ROUGE-SU4值上分别提升了0.63%,1.51%,2.69%。
关键词
微博摘要
语义图优化
TF—IDF
句子相似度
Keywords
microblogssummarization
semantic graph optimization
TF-IDF
sentence similarity
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
融合字词模型的中文命名实体识别研究
殷章志
李欣子
黄德根
李玖一
《中文信息学报》
CSCD
北大核心
2019
41
下载PDF
职称材料
2
基于语义图优化算法的中文微博观点摘要研究
张聪
裴家欢
黄锴宇
黄德根
殷章志
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017
2
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部