期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于VMD-CNN-BiLSTM-CBAM的配变短期负荷预测方法
1
作者
何晔
殷若宸
+2 位作者
陆之洋
徐小东
徐玉韬
《电力大数据》
2024年第6期1-10,共10页
随着智能电网的发展,配变重过载预警的准确性对于维持电网稳定运行至关重要。本文提出了一种新的基于VMD-CNN-BiLSTM-CBAM模型的配变短期负荷预测方法,旨在提高预警准确性。该方法首先运用K均值聚类算法筛选出相似日,并利用变分模态分解...
随着智能电网的发展,配变重过载预警的准确性对于维持电网稳定运行至关重要。本文提出了一种新的基于VMD-CNN-BiLSTM-CBAM模型的配变短期负荷预测方法,旨在提高预警准确性。该方法首先运用K均值聚类算法筛选出相似日,并利用变分模态分解(variational mode decomposition,VMD)对相似日的负荷数据进行分解,得到一系列内在模态函数(intrinsic mode function,IMF)分量。随后,各IMF分量通过结合卷积神经网络(convolutional neural network,CNN)、双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)和卷积块注意力机制(convolutional block attention module,CBAM)的混合模型进行特征学习和预测。最终,使用样本熵理论将预测得到的各IMF分量重构合成,获得配变的预测日负荷曲线。实验结果表明,本文提出的方法在预测精度上有明显提升,为配变重过载预警提供了有效的技术支撑。
展开更多
关键词
配电变压器
短期负荷预测
变分模态分解
卷积神经网络
双向长短时记忆网络
卷积块注意力机制
下载PDF
职称材料
题名
基于VMD-CNN-BiLSTM-CBAM的配变短期负荷预测方法
1
作者
何晔
殷若宸
陆之洋
徐小东
徐玉韬
机构
贵州电网有限责任公司安顺供电局
贵州大学
贵州电网有限责任公司电力科学研究院
出处
《电力大数据》
2024年第6期1-10,共10页
基金
国家重点研发计划项目(2022YFE0205300)
国家自然科学基金(52367005)。
文摘
随着智能电网的发展,配变重过载预警的准确性对于维持电网稳定运行至关重要。本文提出了一种新的基于VMD-CNN-BiLSTM-CBAM模型的配变短期负荷预测方法,旨在提高预警准确性。该方法首先运用K均值聚类算法筛选出相似日,并利用变分模态分解(variational mode decomposition,VMD)对相似日的负荷数据进行分解,得到一系列内在模态函数(intrinsic mode function,IMF)分量。随后,各IMF分量通过结合卷积神经网络(convolutional neural network,CNN)、双向长短时记忆网络(bidirectional long short-term memory,BiLSTM)和卷积块注意力机制(convolutional block attention module,CBAM)的混合模型进行特征学习和预测。最终,使用样本熵理论将预测得到的各IMF分量重构合成,获得配变的预测日负荷曲线。实验结果表明,本文提出的方法在预测精度上有明显提升,为配变重过载预警提供了有效的技术支撑。
关键词
配电变压器
短期负荷预测
变分模态分解
卷积神经网络
双向长短时记忆网络
卷积块注意力机制
Keywords
distribution transformer
short-term load forecasting
variational mode decomposition
convolutional neural network
bidirectional long-short term memory network
convolutional block attention machine
分类号
TM73 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于VMD-CNN-BiLSTM-CBAM的配变短期负荷预测方法
何晔
殷若宸
陆之洋
徐小东
徐玉韬
《电力大数据》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部